To resolve a controversy in the literature concerning the affinity of Mg++ for ATP to be used in our noninvasive 31P NMR procedure for the determination of free Mg++ in living cells, we have reinvestigated the apparent dissociation constant of MgATP under physiologic ionic conditions and over the cellular range of ATP concentrations by a combination of NMR and optical absorbance techniques. The new combination method utilizes 31P NMR chemical shifts to determine the degree of Mg++ chelation of ATP in a solution containing free ATP and MgATP, and uses a properly calibrated indicator dye, antipyrylazo III, for optical measurement of free Mg++ in the same solution. The data yield an average value of 50 +/- 10 microM for the apparent dissociation constant of MgATP which indicates low levels of free Mg++ (less than 1 mM) in several different types of tissues, including perfused heart muscle, contrary to a recent report in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(83)91562-0DOI Listing

Publication Analysis

Top Keywords

dissociation constant
12
constant mgatp
12
31p nmr
12
free mg++
12
nmr optical
8
optical absorbance
8
apparent dissociation
8
mg++
5
measurement dissociation
4
mgatp
4

Similar Publications

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, N/N, O/O, and C/C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> N/N > O/O > C/C.

View Article and Find Full Text PDF

Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and H NMR.

View Article and Find Full Text PDF

Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study.

Bioorg Chem

January 2025

Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:

Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!