Fifteen nuclear magnetic resonance (NMR) studies of 14 patients with herniated lumbar intervertebral disks were performed on the UCSF NMR imager. Computed tomographic (CT) scans done on a GE CT/T 8800 or comparable scanner were available at the time of NMR scan interpretation. Of the 16 posterior disk ruptures seen at CT, 12 were recognized on NMR. Diminished nucleus pulposus signal intensity was present in all ruptured disks. In one patient, NMR scans before and after chymopapain injection showed retraction of the protruding part of the disk and loss of signal intensity after chemonucleolysis. Postoperative fibrosis demonstrated by CT in one patient and at surgery in another showed intermediate to high signal intensity on NMR, easily distinguishing it from nearby thecal sac and disk. While CT remains the method of choice for evaluation of the patient with suspected lumbar disk rupture, the results of this study suggest that NMR may play a role in evaluating this common clinical problem.

Download full-text PDF

Source
http://dx.doi.org/10.2214/ajr.141.6.1153DOI Listing

Publication Analysis

Top Keywords

signal intensity
12
lumbar disk
8
nmr
8
disk
5
recognition lumbar
4
disk herniation
4
herniation nmr
4
nmr fifteen
4
fifteen nuclear
4
nuclear magnetic
4

Similar Publications

The value of MRI in differentiating ovarian clear cell carcinoma from other adnexal masses with O-RADS MRI scores of 4-5.

Insights Imaging

January 2025

Department of Radiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

Objective: To assess the utility of clinical and MRI features in distinguishing ovarian clear cell carcinoma (CCC) from adnexal masses with ovarian-adnexal reporting and data system (O-RADS) MRI scores of 4-5.

Methods: This retrospective study included 850 patients with indeterminate adnexal masses on ultrasound. Two radiologists evaluated all preoperative MRIs using the O-RADS MRI risk stratification system.

View Article and Find Full Text PDF

As breath nitric oxide (NO) is a biomarker of respiratory inflammation, reliable techniques for the online detection of ppb-level NO in exhaled breath are essential for the noninvasive diagnosis of respiratory inflammation. Here, we report a breath NO sensor based on the multiperiodic spectral reconstruction neural network. First, a spectral reconstruction method that transforms a spectrum from the wavelength domain to the intensity domain is proposed to remove noise and interference signals from the spectrum.

View Article and Find Full Text PDF

Exploring wood-derived biochar potential for electrochemical sensing of fungicides mancozeb and maneb in environmental water samples.

Talanta

January 2025

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000, Novi Sad, Serbia.

The sustainable material, biochar (BC) from a hardwood source, was synthesized via pyrolysis process at 400 °C (BC400) and 700 °C (BC700) and used as a modifier during the electrochemical sensor design. The prepared BCs were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and elemental analysis (CHNS). The development of rapid analytical techniques for detecting pesticides employing a low-cost carbon paste electrode (CPE) modified with BC is a novel strategy to provide a sensitive response to water pollution.

View Article and Find Full Text PDF

A machine-learning-integrated portable electrochemiluminescence sensing platform for the visualization and high-throughput immunoassays.

Talanta

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China. Electronic address:

Electrochemiluminescence (ECL)-based point-of-care testing (POCT) has the potential to facilitate the rapid identification of diseases, offering advantages such as high sensitivity, strong selectivity, and minimal background interference. However, as the throughput of these devices increases, the issues of increased energy consumption and cross-contamination of samples remain. In this study, a high-throughput ECL biosensor platform with the assistance of machine learning algorithms is developed by combining a microcolumn array electrode, a microelectrochemical workstation, and a smartphone with custom software.

View Article and Find Full Text PDF

Purpose: Despite group-level improvements in active engagement and related outcomes, significant individual variability in response to early intervention exists. The purpose of this preliminary study was to examine the effects of a group-based Naturalistic Developmental Behavioral Intervention (NDBI) on active engagement among a heterogeneous sample of young autistic children in a clinical setting.

Method: Sixty-three autistic children aged 24-60 months ( = 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!