The proliferation of digital imaging methods creates a need for systems that facilitate storage and retrieval of these images. Several low-cost systems with the capability to store, retrieve, and transmit digital images from the medical center to distant general-purpose desktop microcomputers over standard telephone lines were investigated. Using error checking and nonlinear gray scales, both bistable and gray scale display systems were able to transmit and reproduce diagnostic quality images. The major limitations are the lack of low-cost digital mass-storage devices and relatively slow transmission times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2214/ajr.140.2.377 | DOI Listing |
PLoS One
January 2025
Virginia Museum of Natural History, Martinsville, Virginia, United States of America.
The advent of digital wildlife cameras has led to a dramatic increase in the use of camera traps for mammalian biodiversity surveys, ecological studies and occupancy analyses. For cryptic mammals such as mice and shrews, whose small sizes pose many challenges for unconstrained digital photography, use of camera traps remains relatively infrequent. Here we use a practical, low-cost small mammal camera platform (the "MouseCam") that is easy and inexpensive to fabricate and deploy and requires little maintenance beyond camera service.
View Article and Find Full Text PDFErgonomics
January 2025
School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
To enhance the convenience of human body 3D modelling, this study proposes a low-cost method for 3D body reconstruction under limited views, aiming to easily acquire client body size information through smart phone photography. The human body photos of the front, side and back view are captured, and background removal is performed using the U-Net human segmentation model. The PIFuHD model is utilised to obtain single-view point cloud patches, which are then mapped onto 2D images.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
High intrinsic detection efficiency is as decisive as high energy resolution. Scaling up detector volume has presented great challenges, preventing perovskite semiconductors from reaching sufficient detection efficiency. We report a hole-only virtual-Frisch-grid CsPbBr detector up to 2.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Fundamental Chemistry, LIA3 - Applied Analytical Instrumentation Laboratory, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.
This review provides a critical assessment of the most recent advances in digital imaging (DI) methods, applied for the development of analytical methodologies combining quantum dots (QDs). The state-of-the-art, treatment of data, instrumental considerations, software, sensing approaches, and optimization of the resulting methods are reported. Applications of the technology for the analysis of food and beverages, biomedically relevant analytes, drugs, environmental samples and forensic samples are also discussed.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!