Download full-text PDF |
Source |
---|
Biosensors (Basel)
January 2025
Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Breast cancer ranks as the second most prevalent cancer globally and is the most frequently diagnosed cancer among women; therefore, early, automated, and precise detection is essential. Most AI-based techniques for breast cancer detection are complex and have high computational costs. Hence, to overcome this challenge, we have presented the innovative LightweightUNet hybrid deep learning (DL) classifier for the accurate classification of breast cancer.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFPLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Aquatic Botany and Microbial Ecology Research Group, Hungarian Research Network (HUN-REN) Balaton Limnological Research Institute, Tihany, Hungary.
Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!