The application of two-dimensional (2D) Fourier-transform NMR to the determination of rate constants of complex enzyme-catalyzed reactions in the steady state is described. The yeast phosphoglucose isomerase (EC 5.3.1.9)-catalyzed anomerization of glucose 6-phosphate (Glc-6-P) as well as its isomerization to fructose 6-phosphate (Fru-6-P) was chosen as an example. The 2D technique permitted the simultaneous monitoring of the time course of the anomerization and isomerization steps, from which the various reaction rates were determined. The results obtained in the steady state demonstrate the usefulness of the 2D technique by confirming that the anomerization of Glc-6-P is enzyme catalyzed and that the isomerization of the alpha anomer of Glc-6-P to Fru-6-P is at least 10 times faster than the isomerization of the beta anomer of Glc-6-P. These results are compared with reaction rates obtained by rapid-quench methods and the mechanistic implications are discussed. Extrapolation of these results suggests that the 2D Fourier-transform NMR method should be applicable in intact biological tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC393571PMC
http://dx.doi.org/10.1073/pnas.80.5.1241DOI Listing

Publication Analysis

Top Keywords

glucose 6-phosphate
8
anomerization isomerization
8
fourier-transform nmr
8
steady state
8
reaction rates
8
anomer glc-6-p
8
isomerization
5
rates enzyme-catalyzed
4
enzyme-catalyzed exchange
4
exchange determined
4

Similar Publications

Population-based, first-tier genomic newborn screening in the maternity ward.

Nat Med

January 2025

Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, CHU Liege, University of Liege, Liege, Belgium.

The rapid development of therapies for severe and rare genetic conditions underlines the need to incorporate first-tier genetic testing into newborn screening (NBS) programs. A workflow was developed to screen newborns for 165 treatable pediatric disorders by deep sequencing of regions of interest in 405 genes. The prospective observational BabyDetect pilot project was launched in September 2022 in a maternity ward of a public hospital in the Liege area, Belgium.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a well-known red blood cell enzymopathy and a cause of intravascular hemolysis. This case report presents a child with underlying G6PD deficiency who experienced an acute episode of extensive intravascular hemolysis induced by a scrub typhus infection. The key takeaway from this report is that scrub typhus infection can trigger extensive hemolysis in patients with even "mild" G6PD deficiency, and normal G6PD levels found during the acute phase of hemolysis do not rule out the possibility of underlying G6PD deficiency.

View Article and Find Full Text PDF

Purpose: To develop an algorithm using routine clinical laboratory measurements to identify people at risk for systematic underestimation of glycated hemoglobin (HbA1c) due to p.Val68Met glucose-6-phosphate dehydrogenase (G6PD) deficiency.

Methods: We analyzed 122,307 participants of self-identified Black race across four large cohorts with blood glucose, HbA1c, and red cell distribution width measurements from a single blood draw.

View Article and Find Full Text PDF

Potential Strategies Applied by to Survive the Immunity of Its Crustacean Hosts.

Pathogens

January 2025

Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

is the specific pathogen for "milky disease" in the Chinese mitten crab (), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of , largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of cells collected from a control group (cultured without hemocytes) and a treatment group (cultured with hemocytes), using RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!