The control of the amplification C3 convertase, C3b,Bb, of the serum complement system has been found to be defective in five members of a family spanning three generations. One of the five has membranoproliferative glomerulonephritis (MPGN) type III and another has mild idiopathic rapidly progressive glomerulonephritis. The defect is manifested by low serum concentrations of C3 and usually factor B with normal levels of the proteins which control the convertase, H and I. C3 nephritic factor (C3NeF) was not demonstrable. Enhanced C3 conversion was produced by the incubation of their serum at 37 degrees C for 30 min. This conversion was further accelerated by incubation after increasing the serum magnesium concentration by increments ranging from 0.25 to 1.9 mM. Incremental additions of H to serum depleted of H indicated that the amplification convertase of affected family members required more H for its inhibition than did that of normal subjects. This requirement was reduced by the addition of purified normal C3 but not by the addition of purified C3 of the propositus. It is postulated that affected family members are heterozygous for a gene producing an abnormal C3 which, as a constituent of the amplification convertase, C3b,Bb, confers resistance to H. Investigation of this apparently nephritogenic defect may provide insight into the pathogenesis of these glomerulonephritides.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.1983.89DOI Listing

Publication Analysis

Top Keywords

convertase c3bbb
12
amplification convertase
12
family members
8
addition purified
8
convertase
5
serum
5
inherited defect
4
defect convertase
4
c3bbb associated
4
associated glomerulonephritis
4

Similar Publications

Mechanism of complement inhibition by a mosquito protein revealed through cryo-EM.

Commun Biol

May 2024

NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA.

Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically.

View Article and Find Full Text PDF

Inhibitors of complement and coagulation are present in the saliva of a variety of blood-feeding arthropods that transmit parasitic and viral pathogens. Here, we describe the structure and mechanism of action of the sand fly salivary protein lufaxin, which inhibits the formation of the central alternative C3 convertase (C3bBb) and inhibits coagulation factor Xa (fXa). Surface plasmon resonance experiments show that lufaxin stabilizes the binding of serine protease factor B (FB) to C3b but does not detectably bind either C3b or FB alone.

View Article and Find Full Text PDF

Dysregulated activation of the complement system is implicated in the onset or progression of several diseases. Most clinical-stage complement inhibitors target the inactive complement proteins present at high concentrations in plasma, which increases target-mediated drug disposition and necessitates high drug levels to sustain therapeutic inhibition. Furthermore, many efforts are aimed at inhibiting only terminal pathway activity, which leaves opsonin-mediated effector functions intact.

View Article and Find Full Text PDF

We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors.

View Article and Find Full Text PDF

Purpose: Factor H (FH, encoded by CFH) prevents activation of the complement system's alternative pathway (AP) on host tissues. FH impedes C3 convertase (C3bBb) formation, accelerates C3bBb decay, and is a cofactor for factor I (FI)-catalyzed C3b cleavage. Numerous CFH variants are associated with age-related macular degeneration (AMD), but their functional consequences frequently remain undetermined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!