A novel high affinity dopaminergic ligand, N-(p-aminophenethyl)spiroperidol, has been synthesized and radioiodinated to a specific radioactivity of 2175 Ci/mmol. Binding of this ligand to bovine anterior pituitary membranes is: rapid (40-60 min to equilibrium at 25 degrees C) and reversible (t1/2 = 1 h at 25 degrees C); saturable and of high affinity (KD approximately 20 pM) and displays a typical D2-dopaminergic specificity. The ligand, which identifies the same number of receptor sites as other tritiated antagonist ligands, can be used in different tissues and preparations to delineate the characteristics of the D2 receptor. Thus, this high affinity, high specific radioactivity ligand (N-(p-amino-m-[125I]iodophenethyl)spiroperidol) represents a tool which until now had not been available for the characterization of the D2-dopamine receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(84)81213-2DOI Listing

Publication Analysis

Top Keywords

high affinity
16
d2-dopamine receptor
8
bovine anterior
8
anterior pituitary
8
pituitary membranes
8
specific radioactivity
8
high
5
ligand
5
novel radioiodinated
4
radioiodinated high
4

Similar Publications

Background: In continuation of our chemical and biological work on Tithonia tubaeformis, we evaluated the antipyretic activity of its extract which on fractionation gives a pure alkaloid galegine. Galegine a bioprivileged compound, is a hemiterpene bearing a guanidine group, which holds significant importance in medicinal chemistry. Biological activities such as antimicrobial, antidiabetic, anti-inflammatory, cardiovascular, anticancer, and antihypertensive, are often associated with guanidine-containing molecules.

View Article and Find Full Text PDF

The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.

View Article and Find Full Text PDF

Decoding the Molecular Basis of the Specificity of an Anti-sTn Antibody.

JACS Au

January 2025

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections represent critical global health challenges due to the high morbidity and mortality associated with co-infections. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS), infects 4,000 people daily, potentially leading to 1.2 million new cases by 2025, while HCV chronically affects 58 million people, causing cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

-Formyl peptide receptors (FPRs) are membrane receptors that are abundantly expressed in innate immune cells, including neutrophils and platelets, demonstrating potential new targets for immune system regulation and the treatment of inflammatory conditions. We report here the development and bio-physical validation of new FPR imaging agents as effective tools to track FPR distribution, localisation and functions, ultimately helping to establish FPR exact roles and functions in pathological and physiological conditions. The new series of probes feature a small molecule-based FPR address system conjugated to suitable fluorophores, resulting in highly specific FPR agents, including a partial agonist endowed with high affinity ( low/sub-nanomolar potency) on FPR-transfected cells and human neutrophils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!