The mouse major urinary proteins (MUPs) are the products of a multi-gene family of 30-35 genes whose members exhibit diverse tissue specific, developmental, and hormonal controls. Three cDNA clones corresponding to liver MUP mRNAs have been sequenced. Two of the clones (p499, C57BL/6 and p1057, BALB/c) share strong homology whereas a third clone (p199, C57BL/6) has diverged considerably from the others at the nucleic acid (85% homology) and protein (68% homology) levels. The 5' regions of p499 and p199 which show the most sequence divergence were subcloned and shown to hybridize to different liver MUP mRNAs. The p499-5' sequence was expressed in all MUP expressing tissues (liver, lachrymal, submaxillary and mammary) whereas the p199-5' sequence was expressed primarily in the liver and lachrymal. Analysis of liver RNA from mice in different endocrine states indicates that the p499-5' sequence is strongly regulated by thyroxine administration whereas the p199-5' sequence is not. Both sequences appear to be regulated by growth hormone and testosterone. Southern blot analysis of mouse genomic DNA indicates that there are multiple genes homologous to each sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC320058 | PMC |
http://dx.doi.org/10.1093/nar/12.15.6073 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFJMIRx Med
January 2025
Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.
Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China. Electronic address:
Ethnopharmacological Relevance: Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited.
View Article and Find Full Text PDFAuris Nasus Larynx
January 2025
Department of Otolaryngology and Head and Neck Surgery, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi Prefecture 980-8574, Japan.
Objectives: Ethanol consumption may lead to various symptoms depending on its concentration in the blood. Acute ethanol intoxication is a major risk factor for bolus -aspiration; however, studies on the effects of acute ethanol intoxication on swallowing are lacking. Therefore, we investigated the effect of acute ethanol intoxication on mice using the videofluoroscopic swallowing study (VFSS) methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!