The specificity for substrate binding to creatine kinase for metal-nucleotide complexes of the type Cr-(H2O)4-n(NH3)nADP (where n = 0, 3, or 4) and Co-(H2O)4-m(NH3)mADP (for m = 3 or 4) has been investigated over the pH range 5.5-7.8 with the delta-alpha, beta-bidentate diastereoisomers. These inert nucleotide complexes acted as competitive inhibitors vs. MgADP over this range. In addition, the pH dependence of the V, V/K, and Km values for MgADP has been determined. Metal-nucleotide binding to the enzyme is strongest below an approximate pK of 6.45 but again becomes pH independent above pH 7. This pK is not associated with the metal-nucleotide complex. Instead, we conclude that the pK of the acid-base catalyst (thought to be histidine) is about 6.45 in the absence of nucleotide but is raised to 7.2 in its presence. This perturbation of the pK may result from a protein conformational change that allows a hydrogen bond to form between the phosphorylated nitrogen of phosphocreatine and the acid-base catalyst. The pK of the water in Cr(H2O)(NH3)3ADP has been determined to be 6.6, and by comparison of the binding affinity of this complex with that of Cr(NH3)4ADP or Cr(H2O)4ADP, it can be deduced that the hydroxo species binds more strongly than the aquo complex. In general, chromium nucleotides are bound more strongly than cobalt complexes, and binding affinity increases as water replaces ammonia in the first coordination sphere of the metal. Both trends are a result of stronger hydrogen-bond interactions between the metal complex and protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00296a025DOI Listing

Publication Analysis

Top Keywords

creatine kinase
8
acid-base catalyst
8
binding affinity
8
investigation substrate
4
substrate specificity
4
specificity creatine
4
kinase chromium
4
chromium iii
4
iii cobaltiii
4
complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!