The cytoplasm of oocytes of Xenopus laevis is enriched in several soluble proteins which are either absent from the nucleus or are present there at very low concentrations. These molecules, collectively referred to as karyophobic (from the Greek verbs and which are meant here in the sense of "to be afraid of" or "to avoid") proteins represent more than 20% of the total soluble cytoplasmic proteins and include some of the most abundant soluble cellular components. They may be recovered from high-speed supernatant (S-100) fractions and, following sucrose gradient centrifugation, most of them appear in the form of complexes smaller than 8.5 S. On denaturation in urea and two-dimensional gel electrophoresis these proteins appear to be comprised of polypeptides of widely different sizes (ca Mr 15 000-230 000) and isoelectric points covering a broad range of pH values (4.2-8.0). Gel filtration and isoelectric focusing of native karyophobic proteins show that the majority occur in acidic complexes smaller than Mr 150 000, including one case of a small karyophobic protein (C9; Mr 30 000). In contrast to karyophilic proteins and proteins equilibrating between nucleus and cytoplasm karyophobic soluble proteins from [35S]methionine-labelled ooplasms, when injected into unlabelled oocytes, remain in the cytoplasm. Human proteins with a similar karyophobic behaviour have been identified in fractions of soluble proteins from HeLa cells; there, the major karyophobic protein (HCa Mr 36 000) is also one of the most abundant soluble proteins. We conclude that the specific nucleocytoplasmic compartmentalization of soluble proteins is governed not only by the principles of exclusion of large molecules from nuclear uptake and the existence of karyophilic signals in certain proteins but that a series of soluble, globular proteins exist in the cytoplasm, which have other molecular features which selectively exclude them from distribution over the nucleus. The possible functional role of the selective enrichment of these abundant proteins, which so far have escaped attention, in establishing a cytoplasmic milieu is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(84)90603-7DOI Listing

Publication Analysis

Top Keywords

soluble proteins
24
proteins
16
abundant soluble
12
soluble
9
karyophobic proteins
8
complexes smaller
8
karyophobic protein
8
karyophobic
7
cytoplasm
5
proteins category
4

Similar Publications

Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.

View Article and Find Full Text PDF

Psilocybin represents a novel therapeutic approach for individuals with major depressive disorder (MDD) who do not respond to conventional antidepressant treatment. Investigating the influence of psilocybin on the pathophysiological processes involved in MDD could enhance our neurobiological understanding of the presumed antidepressant action mechanism. This systematic review aims to summarize the results of human studies investigating changes in blood-based biomarkers of MDD to guide future research on potentially relevant analytes that could be monitored in clinical trials.

View Article and Find Full Text PDF

Validation and performance of microvue sC5b-9 plus ELISA on the Dynex DS2 platform.

Clin Chim Acta

January 2025

Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States. Electronic address:

Background: The complement membrane attack complex involves C5b-mediated assembly of C6-C9 polymers to form pores in cell membranes during complement activation. Inactive complexes can become soluble C5b-9 (sC5b-9) when they bind to Protein S. Elevated sC5b-9 levels are associated with increased risk of hematopoietic stem cell transplant-associated thrombotic microangiopathy (TA-TMA), a serious condition which can be improved with eculizumab therapy.

View Article and Find Full Text PDF

Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing.

Int J Biol Macromol

January 2025

School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.

View Article and Find Full Text PDF

Interactions between protein Z and lycopene: A win-win scenario for both security and stability.

Int J Biol Macromol

January 2025

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China. Electronic address:

Malt protein Z (PZ), the main albumin in malt endosperm, exhibits trypsin inhibitory activity and has the ability to bind fat-soluble active molecules. However, its potential utilization as a food ingredient necessitates an evaluation of its allergenicity. Lycopene has many functional activities, such as antioxidant and treatment or alleviation of various diseases, but its tendency to degrade easily hinders its effective utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!