Several studies have shown that isolation-induced aggressive behavior in rodents may involve alterations in brain serotonin metabolism. The modified response, in isolated, aggressive mice, to several agents specific to serotonin receptors in the brain suggests an altered receptor availability for serotonin-like ligands. In the present study, isolated, aggressive mice showed a significant reduction in the number of serotonin binding sites in three major brain regions, and the effect of amphetamine sulfate varies according to the changes of receptors in differentially housed mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0031-6989(84)80007-7DOI Listing

Publication Analysis

Top Keywords

brain serotonin
8
differentially housed
8
housed mice
8
isolated aggressive
8
aggressive mice
8
regional brain
4
serotonin
4
serotonin receptor
4
receptor changes
4
changes differentially
4

Similar Publications

Background: Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

This review explores the therapeutic potential of the stable gastric pentadecapeptide BPC 157 in addressing electrolyte imbalances, specifically hyperkalemia, hypokalemia, hypermagnesemia, and hyperlithemia. In hyperkalemia, BPC 157 demonstrated a comprehensive counteractive effect against KCl overdose (intraperitoneally, intragastrically, and in vitro), effectively mitigating symptoms such as muscular weakness, hypertension, sphincter dysfunction, arrhythmias, and lethality. It also counteracted the adverse effects of succinylcholine and magnesium overdose, including systemic muscle paralysis, arrhythmias, and hyperkalemia.

View Article and Find Full Text PDF

Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.

View Article and Find Full Text PDF

Mice Lacking the Serotonin Transporter do not Respond to the Behavioural Effects of Psilocybin.

Eur J Pharmacol

January 2025

Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia. Electronic address:

Background And Purpose: Psilocybin is a serotonergic psychedelic with therapeutic potential for several neuropsychiatric disorders, including depression and anxiety disorders. Serotonin-transporter (5-HTT) knockout mice (KO) are a well-validated mouse model of anxiety/depression and are relevant to both chronic treatment with serotonin transporter reuptake inhibitors (SSRIs) and polymorphisms in the serotonin transporter-linked polymorphic region (5-HTTLPR) associated with depression/anxiety and resistance to classic antidepressant treatments. However, there is yet to be a study assessing the effect of psilocybin in 5-HTT KO mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!