The metabolism of 7-bromo-1-methyl-2-methoxymethyl-5-(2'-chlorophenyl)-2, 3-dihydro-1H-1,4-benzodiazepine (metaclazepam, Talis) in animals and men is described. Based upon mass spectrometry fifteen metabolites could be identified. Qualitative and quantitative differences in the biotransformation products of metaclazepam in comparison with the well known metabolites of other drugs in the 1,4-benzodiazepine class could be demonstrated. Metabolites with a benzodiazepine-2-one structure representing the most characteristic feature of other 1,4-benzodiazepines and their metabolites, were found in trace amounts only. The major metabolic pathways of metaclazepam led via stepwise demethylation of the O-methyl and/or the N-methyl group to O-demethyl-metaclazepam (M 2), N-demethyl-metaclazepam (M 7) and bis-demethyl-metaclazepam (M 6). Further aromatic hydroxylation yielded the metabolite M 1. Two metabolites with amino-benzophenone structure (M 5, M 8) which are in general known to result from other 1,4-benzodiazepines could be detected. Additionally a 3-oxo-benzodiazepine (M 4) was found. Minor biotransformation pathways led to a chlorophenyl-bromo-benzodiazepine (M 9) by loss of the side chain from bis-demethyl-metaclazepam and N-demethyl-metaclazepam. By further oxidation and degradation the 2-oxo-benzodiazepine M 10 and the dihydro-quinazoline M 12 were formed. The respective N-methylated metabolites M 13 and M 16 were possibly generated by the same pathway. Still open is the formation of M 15, a 1-methyl-3-hydroxy-4-(2'-chlorophenyl)-6-bromo-1,2-dihydroquinoline and M 11, a 2-methyl-4-(2'-chlorophenyl)-6-bromo-quinazoline. The substitution of bromine by a hydroxyl group during the formation of M 14 can be explained by a NIH-shift mechanism. Quantitative investigations show that the methoxymethyl side chain in the benzodiazepine ring system of metaclazepam acts as an effective barrier with respect to the metabolic attack at position two. We assume that this barrier only can be overcome by complete side chain degradation. This multi-step reaction can hardly compete with more favourable and faster conjugation and elimination processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03189684DOI Listing

Publication Analysis

Top Keywords

side chain
12
metaclazepam talis
8
metabolites
7
metaclazepam
5
metabolism pharmacokinetics
4
pharmacokinetics metaclazepam
4
talis iii
4
iii determination
4
determination chemical
4
chemical structure
4

Similar Publications

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid.

View Article and Find Full Text PDF

Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Asiatic acid methyl ester, a new asiaticoside derivative, induces osteogenic differentiation of hPDLCs.

Arch Oral Biol

January 2025

Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellent in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, Thailand.

Objective: Asiaticoside has the capacity to induce osteogenic differentiation of human periodontal ligament cells (hPDLCs) through Wnt (Wingless-related integration site) signaling. A modified chemical structure (by removing glycoside side chain), referred to as asiatic acid methyl ester (AA1), has been constructed and evaluated for its capacity to induce osteogenic differentiation.

Design: hPDLCs viability was determined by MTT assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!