The investigation of nitrofurantoin (NTF) pharmacokinetics in pregnant rats was undertaken to estimate its cumulation in the fetus unit. It was found that pharmacokinetics of NTF is dose-dependent in non-pregnant rats. The biological half-life time increased from 0.24 to 0.41 and 0.72 h for NTF doses 10.20 and 40 mg/kg, respectively. The elimination of NTF was diminished in pregnant rats. The pharmacokinetic analysis revealed a possibility of strong NTF accumulation in the pregnant rats (increased K12/K21 ratio). Taking into account increased renal function in pregnancy, one may suspect that decreased elimination of NTF was rather caused by its significant cumulation in the changed tissue compartment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pregnant rats
12
elimination ntf
8
ntf
6
[pharmacokinetics nitrofurantoin
4
nitrofurantoin bodies
4
pregnant
4
bodies pregnant
4
pregnant rats]
4
rats] investigation
4
investigation nitrofurantoin
4

Similar Publications

Prenatal exposure to nitrate alters uterine morphology and gene expression in adult female F1 generation rats.

Arch Endocrinol Metab

January 2025

Universidade Federal de São Paulo São PauloSP Brasil Universidade Federal de São Paulo, São Paulo, SP, Brasil.

Objective: Nitrate is ubiquitously found in the environment and is one of the main components of nitrogen fertilizers. Previous studies have shown that nitrate disrupts the reproductive system in aquatic animals, but no study has evaluated the impact of nitrate exposure on the uterus in mammals. This study aimed to evaluate the impact of maternal exposure to nitrate during the prenatal period on uterine morphology and gene expression in adult female F1 rats.

View Article and Find Full Text PDF

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

Maternal exposure to ozone during implantation promotes a feminized transcriptomic profile in the male adolescent liver.

Endocrinology

January 2025

Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC.

Maternal exposure to ozone during implantation results in reduced fetal weight gain in rats. Offspring from ozone-exposed dams demonstrate sexually dimorphic risks to high-fat diet feeding in adolescence. To better understand the adolescent hepatic metabolic landscape following fetal growth restriction, RNA sequencing was performed to characterize the effects of ozone-induced fetal growth restriction on male and female offspring.

View Article and Find Full Text PDF

Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.

View Article and Find Full Text PDF

Objective: This study aims to investigate the impact of subclinical hypothyroidism (SCH) during pregnancy on mitochondrial DNA (mtDNA) methylation in the brain tissues of rat offspring.

Materials And Methods: Sixteen SD rats were randomly divided into two groups: control group (CON) and SCH group. BS-seq sequencing was used to analyze mtDNA methylation levels in the offspring's brain tissues; the 2,7-dichlorofluorescin diacetate (DCFH-DA) probe method was employed to detect reactive oxygen species (ROS) levels in brain tissues; electron microscopy was utilized to observe the mitochondrial structure in the hippocampal tissues of the offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!