Fourteen esters (formate, acetate, propionate, butyrate, hexanoate, heptanoate, and benzoate) located at C-11 of 11 beta-hydroxyesterone and 11 beta-hydroxyestradiol-17 beta were synthesized and evaluated for uterotropic and gonadotropin release inhibition in rats, as well as their ability to displace (3H) estradiol-17 beta from the rat uterine cytosolic estrogen receptor. The most potent uterotropic agent was 11 beta-formoxyestrone which was 1,625 or 2,500 times as active as 11 beta-hydroxyesterone in the uterotropic or gonadotropin release inhibition assay, respectively. 11 beta-Formoxyestrone was 7.5 times as uterotropic as estradiol-17 beta and equal to estradiol-17 beta in inhibiting gonadotropin release. However, the most potent inhibitor of gonadotropin release was 11 beta-acetoxy-estradiol-17 beta which had 133% of the activity of estradiol-17 beta, although it had only 38% of the activity of estradiol-17 beta in the uterotropic assay. Esters larger than the acetoxy group showed sharply decreased activities in either assay. Despite the high estrogenic potency of the 11-formates or 11-acetates, they were rather weak (6% to 35% as active as estradiol-17 beta) in displacing (3H) estradiol-17 beta from the rat uterine cytosolic estrogen receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0039-128x(84)90063-1DOI Listing

Publication Analysis

Top Keywords

estradiol-17 beta
28
gonadotropin release
16
beta
9
uterotropic gonadotropin
8
release inhibition
8
beta rat
8
rat uterine
8
uterine cytosolic
8
cytosolic estrogen
8
estrogen receptor
8

Similar Publications

The metabolomic approach has recently been used in the assessment of semen quality and male fertility. Additionally, the crucial roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in metabolic syndrome (MetS) were reported. However, little information exists about the association between BCAAs and AAAs with semen parameters, particularly in men with and without MetS.

View Article and Find Full Text PDF

Cholic acid inhibits ovarian steroid hormone synthesis and follicular development through farnesoid X receptor signaling in mice.

Int J Biol Macromol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study investigated the effects of cholic acid (CA) on steroid hormone synthesis and follicular development in mouse ovaries and the regulatory mechanism of CA on the expression of steroidogenesis-related genes in granulosa cells. The mice were divided into control and CA groups, and serum and ovarian samples were collected after 1, 2, and 4 months of treatment, respectively. The results showed that CA treatment for 1, 2, and 4 months reduced ovarian weights, disrupted the estrous cycle, decreased the number of antral follicles and corpora lutea, and lowered the serum levels of progesterone and estradiol.

View Article and Find Full Text PDF

NEONATAL CO-ADMINISTRATION OF THE PHYTOESTROGENS GENISTEIN AND DAIDZEIN DISRUPTS SEXUAL BEHAVIOR AND FERTILITY.

Physiol Behav

January 2025

Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México. Electronic address:

Phytoestrogens are non-steroidal compounds that, can act as agonists and/or antagonists by binding to estrogen receptors; hence they can modify estrogen-dependent processes of neonatal sexual differentiation. Results of the analysis of the sexual behavior of experimental rats that received 6.8 mg of isoflavones/kg/day, showed significantly more mating activity, but fewer ejaculations (p<0.

View Article and Find Full Text PDF

Introduction: Hormonal contraceptives (HCs), which contain synthetic forms of estrogen (i.e., ethinyl estradiol) and/or progesterone (i.

View Article and Find Full Text PDF

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!