Propionibacterium acnes was grown on Eagle's medium for 4-15 days at pH 5.3-7.2 The porphyrin production was measured both by direct fluorometry and by high pressure liquid chromatography (HPLC). The greatest concentration of porphyrins was produced at pH 6.1. Protoporphyrin was the dominant porphyrin species present in the bacteria in all samples. The relative amount of coproporphyrin was greatest at pH 6.7 after 4 days of incubation. In human skin there are local variations in the pH; therefore our findings may be of importance for porphyrin production in acne.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00413361DOI Listing

Publication Analysis

Top Keywords

porphyrin production
12
propionibacterium acnes
8
influence porphyrin
4
production propionibacterium
4
acnes propionibacterium
4
acnes grown
4
grown eagle's
4
eagle's medium
4
medium 4-15
4
4-15 days
4

Similar Publications

Ultrathin 2D Cu-Porphyrin MOF Nanosheet Loaded FeO Nanoparticles As a Multifunctional Nanoplatform for Synergetic Chemodynamic and Photodynamic Therapy Independent of O.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.

In this study, we developed a multifunctional nanoplatform to address the limitations of strictly acidic pH for the Fenton reaction involving FeO and the low efficiency of mono treatments. The hybrid material, FeO@Cu-TCPP, was assembled through hydrophobic interactions of polyvinylpyrrolidone (PVP) coated on its surface. The efficiency of the Fenton reaction using FeO was significantly enhanced by the photo-Fenton process in the presence of Cu-TCPP.

View Article and Find Full Text PDF

A significant enhancement in the photocatalytic activity of metal-organic frameworks (MOFs) is achieved by expanding the visible-light response range through the strategic incorporation of functional groups, such as metalloporphyrins. Herein, Pd-metalised tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) photosensitiser is integrated into the UiO-66-(NH) framework, creating the hybrid material PdTCPP ⊂ UiO-66-(NH) using a facile mixed-ligand strategy. Platinum nanoparticles (Pt NPs) are subsequently introduced as a co-catalyst via in situ photoreduction, resulting in the formation of the Pt/PdTCPP ⊂ UiO-66-(NH) hybrid material, which demonstrates exceptional catalytic performance under visible-light irradiation.

View Article and Find Full Text PDF

Several studies were focused on the application of MIL-100(Fe) (FeO(OH)(HO)(BTC), HBTC is 1,3,5-benzene tricarboxylic acid) in the photo-Fenton reaction, but it still suffers from low efficiency. In this work, MIL-100(Fe) was synthesized at ambient conditions and low pHs using Fe(II) precursors in homogeneous aqueous media to develop a sample with high activity in the photo-Fenton reaction, even better than Fe-porphyrin metal-organic frameworks. The as-synthesized sample is highly crystalline with 30.

View Article and Find Full Text PDF

Impact of Functional Fluorinated Porphyrins on the Efficiency and Stability of Perovskite Solar Cells.

Small

January 2025

Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402202, Taiwan.

Additives play a pivotal role in enhancing the efficiency of perovskite solar cells (PSCs), and carefully designed additives contribute to major breakthroughs in device performance. In this study, a series of novel A-π-A-type porphyrin derivatives-PPH-1, PPH-2, and PPF-1-are synthesized, each incorporating pyridyl groups, specifically engineered to function as passivation agents for PSCs. The electron-withdrawing properties of fluorine in PPF-1 increase the molecular polarity, thereby strengthening its interaction with the perovskite and enhancing the passivation efficacy.

View Article and Find Full Text PDF

A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!