A study was made of the effect of X-radiation on nuclear membranes. Good resolution spectra of nuclear membrane of equal effective thickness were obtained by the method of internal reflection spectroscopy in the infrared region. The experiment indicated the presence of major characteristic bands of protein and phospholipid molecular groups of non-irradiated nuclear membranes. Conformational changes in the samples of the exposed (100 and 1000 Gy) lipoprotein complex resulted in some quantitative changes in the absorption intensities of the molecular groups of membranes. These data are consistent with the behaviour of nuclear membranes on the interphase, studied by the Langmur monolayer technique, and with the changes in the membrane morphology observed with the electron microscope.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nuclear membranes
16
molecular groups
8
nuclear
5
membranes
5
[study radiation
4
radiation damage
4
damage nuclear
4
membranes spectroscopy
4
spectroscopy monolayer
4
monolayer technics]
4

Similar Publications

Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges.

ACS Appl Mater Interfaces

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.

View Article and Find Full Text PDF

Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution.

Small Methods

January 2025

Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.

Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!