Angus cow-calf pairs (N = 114) were individually fed grass silage diets under conditions chosen to approximate nutrient intake under a free grazing, noncreep situation. Postfactum comparison with a subsequently conducted study on pasture indicated that the procedures used produced animal responses similar to those provided by a tall fescue pasture averaging 58% dry matter digestibility. Cow-calf pair efficiency was expressed as the ratio of estimated total digestible nutrient (ETDN) intake of the pair to calf weight at weaning. Initial cow weight per se was unrelated to pair efficiency. When considered jointly with calf weight at weaning, initial cow weight was unfavorably and calf weight was favorably related to pair efficiency. Calf age at weaning and milk production were favorably related to pair efficiency through their relationship with calf weight at weaning. Initial cow fat thickness, estimated ultrasonically, was not related to this measure of efficiency, indicating compensations between the year just completed and the next year in the relationship between cow fat thickness at weaning and pair efficiency. Mating schemes resulting in selection of relatively smaller females and larger males, within the variation available in a straightbred population, would be expected to alter the cow weight-calf weight ratio in a direction favorable to the component of efficiency defined in this study.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas1984.5951176xDOI Listing

Publication Analysis

Top Keywords

pair efficiency
20
calf weight
16
weight weaning
12
weaning initial
12
initial cow
12
cow-calf pairs
8
efficiency
8
cow weight
8
favorably pair
8
cow fat
8

Similar Publications

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

Coupling-Induced Dynamic Off-Centering of Cu Drives High Thermoelectric Performance in TlCuS.

J Am Chem Soc

January 2025

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.

Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

Converting CO2 to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO2 conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!