Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/ps.35.12.1234 | DOI Listing |
Adv Biotechnol (Singap)
December 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
Adv Biotechnol (Singap)
June 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Although significant progress of clinical strategy has been made in gene editing and cell engineering in immunotherapy, it is now apparent that design and modification in terms of complex signaling pathways and motifs on medical synthetic biology are still full of challenges. Innate immunity, the first line of host defense against pathogens, is critical for anti-pathogens immune response as well as regulating durable and protective T cell-mediated anti-tumor responses. Here, we introduce DSCI (Database of Synthetic Biology Components for Innate Immunity, https://dsci.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!