Cytoplasmic tubulin purified from unfertilized sea urchin eggs self-assembles in the absence of microtubule-associated proteins (MAPs) [Suprenant and Rebhun, 1983; Detrich and Wilson, 1983] with a critical concentration for polymerization of 0.8 mg/ml at 15-18 degrees C, a value well below the 3 mg/ml tubulin present in these eggs [Pfeffer et al, 1976]. Studies of the calcium sensitivity of unfertilized S. purpuratus (sea urchin) egg tubulin were initiated to help understand how this tubulin is maintained unassembled in the unfertilized egg. Egg microtubules, assembled at physiological temperatures (15-18 degrees C) were depolymerized by a 100-fold lower free calcium concentration than egg microtubules assembled at the higher temperatures (25-37 degrees C) generally used to assemble mammalian brain microtubules. The initial rate of egg microtubule assembly was much more sensitive to calcium than was microtubule depolymerization at steady state at 37 degrees C. However, both processes were sensitive to near physiological free calcium concentrations at 18 degrees C. The co-assembly of bovine brain MAPs and sea urchin egg tubulin produced microtubules that required a 1,000-fold higher concentration of free calcium for depolymerization than microtubules assembled at 18 degrees C from egg tubulin alone. While calcium regulatory MAPs have not yet been found in sea urchin eggs, the fact that brain MAPs interact with egg tubulin and regulate both its critical concentration for polymerization [Suprenant and Rebhun, 1983] and its calcium sensitivity, suggests that such regulatory molecules exist. These results suggest that sea urchin egg tubulin assembly in vivo could be controlled by variations in intracellular calcium levels acting in concert with urchin egg proteins similar in function to brain MAPs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.970040504DOI Listing

Publication Analysis

Top Keywords

sea urchin
24
egg tubulin
24
urchin egg
20
egg
12
calcium sensitivity
12
microtubules assembled
12
free calcium
12
brain maps
12
calcium
9
tubulin
9

Similar Publications

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.

View Article and Find Full Text PDF

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.

View Article and Find Full Text PDF

This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.

View Article and Find Full Text PDF

The oral administration of drugs for cancer therapy can maintain optimal blood concentrations, is biologically safe and simple, and is preferred by many patients. However, the complex lumen environment, mucus layer, and intestinal epithelial cells are biological barriers that hinder the absorption of orally administered drugs. In this study, sea urchin-like manganese-doped copper selenide nanoparticles (Mn-CuSe NPs) were designed using an anion exchange method and coated with calcium alginate and chitosan (AC) to form Mn-CuSe@AC capsules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!