Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02939895 | DOI Listing |
Front Aging Neurosci
December 2024
Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
Background: Extracellular vesicles (EVs) have garnered significant attention in Alzheimer's disease (AD) research over the past decade, largely due to their potential in diagnostics and therapeutics. Although the investigation of EVs in AD is a relatively recent endeavor, a comprehensive bibliometric analysis of this rapidly growing field has yet to be conducted.
Methods: This study aims to elucidate and synthesize the relationship between EVs and AD, offering critical insights to guide future research and expand therapeutic possibilities.
Aging Cell
January 2025
Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
Increased expression of the cyclin-dependent kinase inhibitor p16Ink4a (p16) is detected in neurons of human Alzheimer's disease (AD) brains and during normal aging. Importantly, selective eliminating p16-expressing cells in AD mouse models attenuates tau pathologies and improves cognition. But whether and how p16 contributes to AD pathogenesis remains unclear.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Aims: This study aims explore the impact of catechol, dopamine, and L-DOPA on the stability and toxicity of β-amyloid peptides, which play a key role in the neurodegenerative process of Alzheimer's disease, to assess their potential as therapeutic agents.
Background: Alzheimer's disease is marked by the aggregation of β-amyloid peptides, which contribute to neurodegeneration. Exploring how various compounds interact with β-amyloid peptides can offer valuable insights into potential therapeutic strategies.
Commun Biol
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
Background: Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer's disease (AD). However, more investigation is required to ascertain the relationship between β2M and glial activities in AD pathogenesis.
Methods: In this study, 211 participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with CSF and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), Aβ, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and suspected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer's Association (NIA-AA) criteria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!