Binding of the non-ionic detergent [3H]Triton X-100 by tetanus toxin, by its fragment C and by its alpha chain has been studied. At pH 4.00 or above, tetanus toxin does not bind Triton X-100. At pH lower than 4.00, binding of detergent to the toxin occurs. At pH 3.00, a maximum of 100 mol bound/mol of protein is reached only when the detergent concentration exceeds its critical micelle concentration. No measurable amount of Triton X-100 is bound by the toxin C fragment at pH 3.00. Most of the tetanus toxin alpha chain precipitates out in Triton X-100 at pH 3.00. Leakage of K+ from single-walled asolectin vesicles loaded with potassium was observed with tetanus toxin at pH lower than 4.00. When ganglioside GDlb was present on the asolectin vesicles, release of K+ was obtained with tetanus toxin between pH 4.00 to 5.00. We suggest that, as for diphtheria toxin, entry of tetanus toxin into an acidic compartment of target cells might be required for the expression of its biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1984.tb08469.xDOI Listing

Publication Analysis

Top Keywords

tetanus toxin
28
triton x-100
12
toxin
10
toxin fragment
8
alpha chain
8
lower 400
8
asolectin vesicles
8
tetanus
7
low induces
4
induces hydrophobic
4

Similar Publications

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

An Unexpected Case of Generalized Tetanus.

Cureus

December 2024

Intensive Care Unit, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT.

Tetanus is a disease of the nervous system caused by a toxin produced by , an anaerobe found in high concentrations in the soil. The occurrence of tetanus is related to contaminated traumatic wounds, and most patients have had some failure in their immunization. However, there are rare case reports of generalized tetanus in patients with proper vaccination schemes who failed to receive appropriate prophylaxis after high-risk exposure.

View Article and Find Full Text PDF

Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of . While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by , whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of .

View Article and Find Full Text PDF

The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus.

View Article and Find Full Text PDF

Intranasal administration of angiotensin receptor shRNA to brain lowers blood pressure in spontaneously hypertensive rats.

Biomed Pharmacother

December 2024

Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States. Electronic address:

Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!