The response of retinal ganglion cells to optic nerve crush was examined in the hooded rat. Intracranial nerve crush produces a transient shrinkage of the retinal ganglion cells during the first several weeks postoperatively but partial recovery of cell size then appears to occur. This transient response is considered to be a direct response to axotomy. Retrograde transport of horseradish peroxidase (HRP) is clearly demonstrated at 2 weeks postoperatively. Transport of newly synthesized protein progressively decreases over the first 2 postoperative months. The ganglion cell therefore retains viability for at least the first few weeks after axotomy. Loss of 60% of the neurons in the ganglion cell layer occurs between 3 and 7 months postoperatively. This late occurring retrograde response is considered to result at least in part from loss of sustaining trophic influences rather than as a direct result of the lesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01148334 | DOI Listing |
Pharmaceutics
January 2025
Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
Background/objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility.
View Article and Find Full Text PDFPharmaceutics
January 2025
Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.
Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.
View Article and Find Full Text PDFBiomolecules
January 2025
Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain.
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!