The effects of chronic exposure to high environmental temperature (34 degrees C) on T4 production rate, food-intake, growth-rate and resting metabolic rate were investigated in adult male rats. This study was designed to examine the extent of variations and possible relationships between these parameters. As compared to control rats of the same body weight kept at 25 degrees C, rats exposed to 34 degrees C for 3-4 weeks exhibited a retarded growth-rate: 2.3 vs 4.0 g/day, a reduced food-intake: 15.2 vs 23.2 g/day, a decreased T4 production-rate: 1.8 vs 2.7 micrograms/day and a decreased oxygen consumption: 4.0 vs 5.4 ml/min. Heat-exposure altered the 4 parameters to a similar extent. T4 supplementation (3 micrograms/day) which induced a decrease in plasma TSH concentration, did not restore a normal growth-rate in heat-exposed rats. The decreased food-intake of the heat-exposed rats was not associated with any significant changes in the daily pattern of variations of liver glycogen content, or in the mean daily levels of blood glucose or insulin. The ratio T3 to rT3 in plasma was not altered by chronic heat exposure. When rats which had been chronically exposed to heat (25 days at 34 degrees C) were exposed to 25 degrees C, growth-rate, food-intake and oxygen consumption rapidly increased to control values whereas the rate of T4 production remained low. It is concluded that (1) a decrease in thyroid hormone economy is not directly involved in the alterations of growth and energy expenditure in rats chronically exposed to heat, (2) heat exposure does not lead to the establishment of a fasted state resulting from a large reduction in voluntary food intake, (3) metabolic alterations induced by heat exposure are rapidly and completely reversible upon decreasing the environmental temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00581534DOI Listing

Publication Analysis

Top Keywords

heat exposure
16
metabolic alterations
8
alterations induced
8
chronic heat
8
environmental temperature
8
exposed degrees
8
oxygen consumption
8
heat-exposed rats
8
rats chronically
8
chronically exposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!