An effect of salt concentration on the human myeloma immunoglobulin G structure was studied by means of circular dichroism, thermal perturbation difference spectroscopy and isoelectric focusing in a pH gradient created by a concentration gradient of glucose in borate buffer solution. Immunoglobulin G (K) Iva showed a significant shift of isoelectric point to the alkaline region as a result of the increase in salt concentration. The difference spectra indicated a change in the exposure of tyrosine residues as a result of increase in salt concentration. No changes in the circular dichroic spectra with salt concentration were observed between 205 and 250 nm. Spectral changes observed for the undigested immunoglobulin G molecule are more marked than those observed for the isolated Fab fragments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2795(78)90395-1 | DOI Listing |
Curr Res Food Sci
December 2024
Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound Hg formation in the atmosphere stems mainly from the adsorption of reactive gaseous Hg on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of Hg over Hg in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations.
View Article and Find Full Text PDFMetasurfaces offer a powerful tool to realize label-free and highly sensitive Raman spectroscopy. Embedding metasurfaces into microfluidic channels is promising to establish a new characterizing platform for microfluids. In this Letter, we present a highly stable method for improving the Raman scattering intensity of biological microfluids by using a microfluidic chip embedded with a plasmonic metasurface.
View Article and Find Full Text PDFNature
January 2025
Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.
View Article and Find Full Text PDFACS Nano
January 2025
Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.
The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!