A new isolation procedure for bovine retinal pigment epithelial cells has been developed. It is based on perfusion of the whole bovine eye via the central ophthalmic artery with a cold, buffered isotonic salt solution free of divalent cations for 15 min. The perfusion both weakens the association of the pigment epithelial cells with Bruch's membrane and the adhesion between retina and pigment epithelium. The retina then is removed carefully, after which the pigment epithelial cells are detached from the Bruch's membrane by gentle jets of buffer solution. The perfusion technique provides a high yield of intact retinal pigment epithelial cells, which show good viability in subsequent cell culture. Hence, cells isolated in this way are not only very well suited for long-term cell culture but also for direct biochemical analysis and short-term incubation studies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pigment epithelial
16
epithelial cells
16
retinal pigment
12
isolation procedure
8
pigment epithelium
8
bruch's membrane
8
cell culture
8
pigment
6
cells
5
procedure retinal
4

Similar Publications

Background: Age-related macular degeneration (AMD), a condition of multifactorial origin, is a major cause of irreversible vision loss in industrialized countries. The dry late stage of the disease, known as geographic atrophy (GA), is characterized by progressive loss of photoreceptor cells and retinal pigment epithelial cells in the central retina. An estimated 300 000 to 550 000 people in Germany suffer from GA.

View Article and Find Full Text PDF

Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics.

View Article and Find Full Text PDF

Aim: To test the effect of autophagy on inflammatory damage resulting from oxidative stress in adult retinal pigment epithelial cell line (ARPE-19).

Methods: ARPE-19 cells were pretreated with 200 and 600 µmol/L hydrogen peroxide (HO) at various time intervals. The changes of cell morphology, cell viability, reactive oxygen species (ROS) level, autophagic activity, and the inflammatory cytokines (TNFα, IL-6, and TGFβ) were measured at baseline and after treatment with autophagy inducer rapamycin (Rapa) and suppressor wortmannin (Wort) or shATG5.

View Article and Find Full Text PDF

IL-17A mediates inflammation-related retinal pigment epithelial cells injury ERK signaling pathway.

Int J Ophthalmol

January 2025

Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China.

Aim: To investigate whether interleukin-17A (IL-17A) gets involved in the mechanisms of inflammation-related retinal pigment epithelium (RPE) cells injury and its significance in age-related macular degeneration (AMD).

Mrthods: A sodium iodate (NaIO) mouse model as well as mice were established. The effects of inflammatory cytokines in RPE cells and retinal microglia before and after NaIO modeling and , were investigated using immunofluorescence, immunoprotein blotting, and quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), respectively.

View Article and Find Full Text PDF

The Interplay between Metabolic Reprogramming, Mitochondrial Impairment, and Steroid Response in Proliferative Vitreoretinopathy.

Free Radic Biol Med

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P. R. China, No.251 Fu Kang Road, Nankai District, Tianjin 300384, P. R. China. Electronic address:

Proliferative vitreoretinopathy (PVR) is a major cause of rhegmatogenous retinal detachment repair failure. Despite many attempts to find therapeutics for PVR, no pharmacotherapy has been proven effective. Steroids, as the epitome, show uncertain clinical effectiveness, which lacks an explanation and hints at unappreciated mechanisms of PVR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!