The interstitial cell system of hydra contains multipotent stem cells which can form at least two classes of differentiated cell types, nerves and nematocytes. The amount of nerve and nematocyte production varies in an axially dependent pattern along the body column. Some interstitial cells can migrate, which makes it conceivable that this observed pattern of differentiation is not the result of regionally specified stem cell commitment, but rather arises by the selective movement of predetermined cells to the correct site prior to expression. To assess this latter possibility quantitative information on the dynamics of interstitial cell migration was obtained. Epithelial hydra were grafted to normal animals in order to measure (1) the number of cells migrating per day, (2) the location of these cells within the host tissue, and (3) the axial directionality of this movement. Tissue properties such as axial position and the density of cells within the interstitial spaces of the host were also tested for their possible influence on migration. Results indicate that there is a considerable traffic of migrating interstitial cells and this movement has many of the characteristics necessary to generate the position-dependent pattern of nerve differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0012-1606(84)90255-0 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China. Electronic address:
Chronic pancreatitis (CP) is a clinical entity characterized by progressive inflammation and irreversible fibrosis of the pancreas, which ultimately leads to exocrine and/or endocrine insufficiency as well as an increased risk of pancreatic cancer. Currently, there are no specific or effective approved therapies for CP. Herein, we show that macrophage to myofibroblast transdifferentiation (MMT) and M2 macrophage polarization are associated with both human CP and CP experimental mouse models.
View Article and Find Full Text PDFStem Cells Int
January 2025
Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.
Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.
View Article and Find Full Text PDFClin Nephrol Case Stud
January 2025
Department of Medicine.
Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.
View Article and Find Full Text PDFVet Res Forum
December 2024
Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Leydig cells play a crucial role in male reproductive physiology, and their dysfunction is often associated with male infertility. Hypoxia negatively affects the structure and function of Leydig cells. This study aimed to investigate the impact of melatonin on the c-Jun N-terminal kinase (Jnk), P38, and extra-cellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) signaling pathways in TM3 mouse Leydig cells under hypoxia induced by cobalt (II) chloride (CoCl).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!