Diiminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile (DAMN), has been investigated as a potential prebiotic phosphorylating agent. DISN effects the cyclization of 3'-adenosine monophosphate to adenosine 2', 3'-cyclic phosphate in up to 39% yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'- hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00933645 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.
Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Systems Biophysics, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany.
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
Probiotics are highly regarded for their multiple functions, such as regulating gut health, enhancing the immune system, and preventing chronic diseases. However, their stability in harsh environments and targeted release remain significant challenges. Therefore, exploring effective protection and delivery strategies to ensure targeted release of probiotics is critically important.
View Article and Find Full Text PDFNutrients
January 2025
Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA.
Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!