The degree of radiation absorption of various human tissues of known histology and known water content was measured at temperatures below freezing point and after fixation in formalin of various concentrations. Computer tomographic "density" showed the least change with tissues in 6% formalin. Higher and lower concentrations of formalin caused considerable changes in radiation absorption. Pure water below freezing point produces a reduction in density of 80 Hounsfield units; consequently, densitometry of frozen sections is pointless. Comparisons of CT density before and after freezing give some indications of chemical composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2008-1056782 | DOI Listing |
Small
January 2025
College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.
Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Sulfurized polyacrylonitrile (SPAN) exhibits a very high cycle stability by overcoming the shuttle effect of conventional Li-S batteries. However, there are still controversies in SPAN about the bonding types of sulfur with the matrix, their critical synthesis temperature regions, and their roles in the electrochemical lithium storage reaction, seriously hindering the economical synthesis of SPAN, the optimization of performances, and the exploration of other SPAN-like alternatives. The key to solving the above problems lies in accurate measurements of the thermodynamic evolution of bonding interactions in the synthesis process as well as in the electrochemical process.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!