Three concentrations (0.5, 1 and 2 per 1000, w/v) of a single batch of trypsin were compared regarding their influence on cultured cardiac cell of newborn rats. All three allowed to obtain cardiac cells in good conditions, as evidence by beating frequencies and [16-14C]-palmitate beta-oxidation. However the 0.5 per 1000 concentration appeared to be the optimal one, inducing a smaller loss of cells during the first two days in culture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[optimal trypsin
4
trypsin concentration
4
concentration rat
4
rat heart
4
heart cell
4
cell cultures]
4
cultures] three
4
three concentrations
4
concentrations 1000
4
1000 w/v
4

Similar Publications

In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.

View Article and Find Full Text PDF

This study optimized the process of extracting protein from black garlic using an alkaline dissolution and acid precipitation method through response surface methodology. The optimal extraction conditions were determined as a solid-to-liquid ratio of 1:50, an extraction time of 100 min, an extraction temperature of 30 °C, and an alkaline extraction pH of 9.0.

View Article and Find Full Text PDF

Antioxidants play an important role in maintaining health and enhancing food stability by neutralizing free radicals. This study aimed to extract antioxidant peptides from white-feathered chicken bones through enzymatic hydrolysis, optimize the enzymatic hydrolysis conditions, and further investigate the relevance between the amino acid composition, molecular weight, and antioxidant activity of the resulting chicken bone hydrolysate. Alcalase was the most effective enzyme for hydrolyzing cooked chicken bones compared with papain, pepsin, and trypsin, yielding hydrolysates with the highest DH and ABTS radical scavenging activity.

View Article and Find Full Text PDF

Effects of combined use of compound acidifiers and plant essential oils in feed on the reproductive performance and physiological status of Xianjv chickens.

Poult Sci

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China. Electronic address:

This study investigates the effects of combined compound acidifiers and plant essential oils on the production performance, egg quality, and health parameters of Xianjv chickens. A total of 240 healthy 34-week-old Xianjv chickens were randomly divided into 5 groups and given 5 different feed additives: a control group with a basal diet, and four experimental groups with varying doses of compound acidifiers (CA) and essential oils (EO). The results revealed that the addition of compound acidifiers and essential oils did not significantly affect average daily feed intake, egg production rate, or feed-to-egg ratio.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!