Alpha ketoglutarate d'ornithine effects on the nutritional status of patients in an Intensive Care Unit are studied. The authors have chosen a random sample of 44 patients with diseases of comparable severity for paired comparison. Treatment is applied at a dosage of 25 g per day with intravenous nutrition and/or oral feeding (150 Kcal/g of excreted nitrogen). Statistical analysis shows a significant improvement of nitrogen balance and prealbumine level, non significant changes for the other criteria. Alpha ketoglutarate of ornithine influences favorably nitrogen balance, prealbumine levels and the nutritional status.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Madrid, Spain.
: Previous studies suggest that there is a genetically determined component of fat oxidation at rest and during exercise. To date, the gene has been proposed as a candidate gene to affect fat oxidation during exercise because of the association of the "at-risk" A allele with different obesity-related factors such as increased body fat, higher appetite and elevated insulin and triglyceride levels. The A allele of the gene may also be linked to obesity through a reduced capacity for fat oxidation during exercise, a topic that remains largely underexplored in the current literature.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms.
View Article and Find Full Text PDFPol J Pathol
January 2025
Clinical Laboratory, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China.
Fat mass and obesity-associated protein (FTO) was the earliest discovered m6A RNA demethylase. Previous studies have indicated that m6A modifications significantly influence the development, progression, and prognosis of various cancers. This study aimed to explore the role of FTO overexpression in colorectal cancer development, as well as its biological functions.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.
Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!