In mice a macromolecular insoluble cold globulin (MICG) is present on the surface of resting and stimulated peripheral T lymphocytes, thymocytes, fetal prothymocytes and hemopoietic stem cells forming spleen colonies, colony-forming unit-spleen (CFU-S). Here we demonstrate that removal of MICG positive cells from bone marrow by treatment with antibody and complement does not affect the number of erythroid, burst-forming unit-erythroid (BFU-E) and granulocyte-macrophage, colony-forming unit-granulocyte macrophage (CFU-GM) progenitors developing in vitro. Thus, commitment of stem cells to lineage specific differentiation is associated with the loss of the MICG marker. Furthermore, the removal of MICG positive T lymphocytes from bone marrow does not affect the growth of BFU-E or CFU-GM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000206404 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!