We studied the effects of the guanine nucleotide-binding regulatory protein (Gs) from human erythrocytes on PTH-responsive adenylate cyclase from partially purified membranes of canine renal cortex (CRC). Extracts of erythrocyte membranes, containing soluble Gs, was obtained by treatment with a detergent (Lubrol PX). Gs did not stimulate adenylate cyclase activity by itself, but amplified the response of adenylate cyclase in CRC membranes to both synthetic bovine PTH-(1-34) [bPTH-(1-34)] and to the hydrolysis-resistant GTP analog 5'-guanylimido-diphosphate [Gpp(NH)p]. Gs increased PTH stimulation of adenylate cyclase activity in both the presence and absence of Gpp(NH)p. In the absence of Gpp(NH)p, the potentiating effect of Gs occurred only when the concentration of bPTH-(1-34) was greater than 10 ng/ml. bPTH-(1-34), Gpp(NH)p, and Gs each enhanced the catalytic activity of adenylate cyclase when added separately or in combination by increasing the apparent maximum velocity (Vmax) of the enzyme without altering the apparent Km for MgATP. The effect of Gs on CRC membrane adenylate cyclase activity in the presence of NaF (10 mM) and forskolin (100 microM) was also examined. NaF- and forskolin-stimulated enzyme activities were significantly increased by Gs in both the presence and absence of Gpp(NH)p (100 microM). Analysis of double reciprocal plots of substrate concentration and enzyme activity revealed that NaF and forskolin increased the Vmax of the catalytic activity and did not alter the apparent Km of the enzyme for MgATP. These data support the role of Gs as a regulator of the response of adenylate cyclase to hormones, guanyl nucleotides, NaF, and forskolin. Our studies address the relative functional stoichiometry between Gs and catalytic unit present in CRC membranes and suggest that the CRC adenylate cyclase system must contain insufficient Gs to couple with all available catalytic units. These results are consistent with the possibility that deficiency of Gs impairs hormonal stimulation by diminishing the apparent Vmax of the catalytic unit and does not alter the apparent affinity of the enzyme for MgATP.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-115-4-1386DOI Listing

Publication Analysis

Top Keywords

adenylate cyclase
36
cyclase activity
12
absence gppnhp
12
naf forskolin
12
adenylate
9
cyclase
9
guanine nucleotide-binding
8
nucleotide-binding regulatory
8
regulatory protein
8
canine renal
8

Similar Publications

The approaches to correct thyroid deficiency include replacement therapy with thyroid hormones (THs), but such therapy causes a number of side effects. A possible alternative is thyroid-stimulating hormone (TSH) receptor activators, including allosteric agonists. The aim of this work was to study the effect of ethyl-2-(4-(4-(5-amino-6-(-butylcarbamoyl)-2-(methylthio)thieno[2,3-d]pyrimidin-4-yl)phenyl)--1,2,3-triazol-1-yl) acetate (TPY3m), a TSH receptor allosteric agonist developed by us, on basal and thyroliberin (TRH)-stimulated TH levels and the hypothalamic-pituitary-thyroid (HPT) axis in male rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.

View Article and Find Full Text PDF

Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia.

Function (Oxf)

January 2025

Institute for Integrative Physiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL. 60637, USA.

Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia (CIH). OSA patients and CIH-treated rodents exhibit overactive sympathetic nervous system and hypertension, mediated through hyperactive carotid body (CB) chemoreflex. Activation of olfactory receptor 78 (Olfr78) by hydrogen sulfide (H2S) is implicated in CB activation and sympathetic nerve responses to CIH, but the downstream signaling pathways remain unknown.

View Article and Find Full Text PDF

Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!