We sought to determine whether streamlining of portal venous blood occurs in normal anaesthetized rats under basal conditions and with variations in hepatic blood flow. We catheterized the ileocolic vein and injected 15 micron microspheres labeled with 85Sr and 141Ce into this vein and into the spleen, respectively. The hepatic lobar distribution of microspheres was studied in a group under basal conditions and after hepatic blood flow was increased (infusions of nitroglycerin or glucagon) or decreased (infusion of vasopressin or ligation of the superior mesenteric artery); this blood flow was measured with a constant infusion of indocyanine green. Measured results (expressed as proportion of total liver counts per minute) were compared with a reference group in which the portal vein of rats had been partially ligated 10 days prior to study and in which similarly injected microspheres that lodged in the liver were assumed to be completely mixed with portal blood. No differences were seen within groups and between the reference and experimental groups. We conclude that under these experimental conditions, portal venous blood flow appears to be distributed homogeneously between hepatic lobes.
Download full-text PDF |
Source |
---|
Clin Drug Investig
January 2025
Department of Cardiology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Primary percutaneous coronary intervention (PPCI) and fibrinolytic or thrombolytic therapy are common treatments for ST-elevation myocardial infarction (STEMI). Primary percutaneous coronary intervention is more effective than thrombolytic therapy, but fibrinolytic therapy is still a preferable option for patients with limited access to healthcare. Alteplase is a tissue plasminogen activator (tPA) used to treat acute myocardial infarction, acute ischemic stroke, and pulmonary embolism.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida.
Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Department of Nephrology, Ghent University Hospital Ghent, Belgium.
Objectives: We evaluated the performance of a novel flow cell morphology analyzer AUTION EYE AI-4510 for counting particles in urine.
Methods: Analytical performance was assessed according to the EFLM European Urinalysis Guideline 2023. Trueness was compared by analyzing 1.
J Appl Physiol (1985)
January 2025
Medical Physics Graduate Program, Duke University, Durham, North Carolina, United States.
Hyperpolarized Xe MRI/MRS enables quantitative mapping of function in lung airspaces, membrane tissue, and red blood cells (RBCs) within the pulmonary capillaries. The RBC signal also exhibits cardiogenic oscillations that are reduced in pre-capillary pulmonary hypertension (PH). This effect is obscured in patients with concomitant defects in transfer from airspaces to RBCs, which increase RBC oscillation amplitudes.
View Article and Find Full Text PDFNMR Biomed
March 2025
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!