In the egg of Xenopus laevis a cortical network of smooth endoplasmic reticulum (SER) surrounds and interconnects each cortical granule (CG) (Campanella and Andreuccetti, '77). This network is a possible intracellular site of calcium storage to be called into action for CG exocytosis. In our experiments, Xenopus eggs, unfertilized or activated by pricking or by calcium ionophore A 23187, have been fixed in osmium-pyroantimonate for calcium localization. Our data show that deposits can be detected only in activated eggs. The calcium chelator edetate (EGTA) and x-ray microprobe analysis demonstrate that they contain calcium. Deposits are found on liposomes and on all intraovular cytomembranes, which therefore appear to be possible sites of calcium sequestration. In the case of ionophore-activated eggs, deposits are detectable independently of the presence of extracellular calcium. These data show that in Xenopus at activation an intracellular liberation of calcium occurs similar to that described in other species. Furthermore, the fact that antimony deposits are observed only after activation makes Xenopus eggs appropriate material in which to follow the temporal and spatial sequence of appearance of the deposits during the early stages of activation. Our results show that antimony deposits appear first in SER vesicles between the plasma membrane and CGs and then spread to the rest of the egg cytomembranes. These data corroborate our hypothesis that in Xenopus the cortical SER network is the first intracellular site where calcium is released at activation. The possible mechanism of calcium release and propagation along the egg cortex is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.1402290215DOI Listing

Publication Analysis

Top Keywords

calcium
12
xenopus laevis
8
pricking calcium
8
calcium ionophore
8
ionophore 23187
8
network intracellular
8
intracellular site
8
site calcium
8
xenopus eggs
8
antimony deposits
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!