Gradually altered synthetic entities were employed as molecular probes, and arachidonic acid, ADP, human alpha-thrombin and the Ca2+ ionophore A23187 as aggregation-inducing agents, in a comprehensive study on the response profile of human blood platelets with an emphasis on the effects of exogenous and increased intracellular Ca2+. Corroborating further previous conclusions, some representative carbamoylpiperidine derivatives, at concentrations effecting substantial inhibition of ADP-induced aggregation, failed to retain that effect when 5.0 mM Ca2+ was introduced into the otherwise identical test medium; reference compounds chlorpromazine and propranolol registered corresponding inhibitory patterns. At increased concentrations the compounds' inhibitory potency was regenerated even in the presence of 5 mM Ca2+. In fact, in sufficiently high concentrations, the compounds were even capable of inhibiting aggregation elicited by 15 microM of the ionophore A23187; so did chlorpromazine and propranolol. Another set of congeners revealed the striking sensitivity of ionophore A23187-induced human blood platelet aggregation to the surface active potencies of inhibitor molecules. The loss in inhibitory potency was directly related to the lesser hydrophobic character of the molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(84)90520-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!