In an experimental investigation, the efficacy of nuclear magnetic resonance (NMR) relaxation times in measuring brain water was studied. Cerebral edema was induced in four dogs with a freeze lesion, which was produced by contact with a steel cylinder cooled in liquid nitrogen and placed on the exposed dural surface of the brain. NMR proton imaging was performed 2, 3, 6, or 24 hr after production of the lesion, at a field strength of 0.35 T, using multiparametric spin-echo (SE) technique. The animals were sacrificed immediately after imaging, and brain samples were analyzed for water content (wet-to-dry, microgravimetry). Correlation between water content, NMR imaging, and resulting T1, T2 relaxation times and mobile proton density values calculated with SE technique was performed. Brain sample analysis showed elevation of water content in the white matter subjacent to the lesion in all four dogs, rising at least 15% in each of the animals. NMR imaging detected the freeze lesion and subjacent vasogenic edema of the white matter in all animals. The 2 sec pulse interval SE technique was most sensitive in the detection of the abnormality, and provided optimal differentiation of gray and white matter. The second echo sampling (56 msec) was most sensitive to the detection of edema. The T1 and T2 relaxation values, as well as the mobile proton density values, were elevated in the normal gray matter and in the abnormal white matter when compared with normal white matter in any given animal.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8332535 | PMC |
Phys Rev Lett
December 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
A comprehensive study of the angular distributions in the bottom-baryon decays Λ_{b}^{0}→Λ_{c}^{+}h^{-}(h=π,K), followed by Λ_{c}^{+}→Λh^{+} with Λ→pπ^{-} or Λ_{c}^{+}→pK_{S}^{0} decays, is performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 9 fb^{-1} collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The decay parameters and the associated charge-parity (CP) asymmetries are measured, with no significant CP violation observed. For the first time, the Λ_{b}^{0}→Λ_{c}^{+}h^{-} decay parameters are measured.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Orthopeadic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Krabbe disease (KD; globoid cell leucodystrophy) is a rare autosomal recessive lipid storage disorder that affects the white matter of the peripheral and central nervous. Late-onset KD is less frequently diagnosed and often presents with milder symptoms, making accurate diagnosis challenging, especially when distinguishing it from peripheral neuropathy. In this report, we present two cases of late-onset KD in a Chinese family.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
January 2025
Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.
As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI).
View Article and Find Full Text PDFClin Park Relat Disord
January 2025
Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy.
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, characterized by recurrent strokes, cognitive decline, and psychiatric symptoms. This report presents a novel NOTCH3 c.1564 T > A (p.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology, College of Medicine, University of Florida, Gainesville, FL.
Purpose: The purpose of this work was to evaluate the image quality of a commercial CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO).
Methods: CT number, noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectrum (NPS) were assessed using the ACR CT Accreditation phantom scanned with various acquisitions at 80 kV, 100 kV, 120 kV, and 135 kV, each with multiple CTDIvol values of 20 mGy, 40 mGy, and 65 mGy. Artifacts were evaluated in an anthropomorphic head phantom, a cadaver head, and in patient studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!