Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0262-1746(83)90086-0DOI Listing

Publication Analysis

Top Keywords

aspirin indomethacin
20
inhibited aspirin
12
hamster lungs
12
arachidonic acid
8
100 microm
8
metabolites extracted
8
aspirin
6
indomethacin
6
metabolism arachidonic
4
hamster
4

Similar Publications

Background: Previously, Japanese Environmental Mutagen and Genome Society/Mammalian Mutagenicity Study Group/Toxicogenomics Study Group (JEMS/MMS toxicogenomic study group) proposed 12 genotoxic marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) and non-genotoxic non-hepatocarcinogens (NGTNHCs) in mouse and rat liver using qPCR and RNA-Seq and confirmed in public rat toxicogenomics data, Open TG-GATEs, by principal component analysis (PCA). On the other hand, the U.S.

View Article and Find Full Text PDF

Coronaviruses (CoV), zoonotic viruses periodically emerging worldwide, represent a constant potential threat to humans. To date, seven human coronaviruses (HCoV) have been identified: HCoV-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, globally circulating in the human population (seasonal coronaviruses, sHCoV), and three highly-pathogenic coronaviruses, SARS-CoV, MERS-CoV and SARS-CoV-2. Although sHCoV generally cause only mild respiratory diseases, severe complications may occur in specific populations, highlighting the need for broad-spectrum anti-coronavirus drugs.

View Article and Find Full Text PDF

Multinuclear complexes are metal compounds featured by adjacent bound metal centers that can lead to unconventional reactivity. Some ML-type paddlewheel dinuclear complexes with monoanionic bridging ligands feature promising properties, including therapeutic ones. Molybdenum has been studied for the formation of multiple-bonded M compounds due to their unique scaffold, redox, and spectroscopic properties as well as for applications in several fields including catalysis and biology.

View Article and Find Full Text PDF
Article Synopsis
  • Aging and age-related diseases are linked to oxidative stress and inflammation, prompting research into nonsteroidal anti-inflammatory drugs (NSAIDs) for potential lifespan extension.
  • In a study with Caenorhabditis elegans, aspirin and ibuprofen were found to extend lifespan in both young and old worms by reducing reactive oxygen species (ROS) and boosting antioxidant gene expression.
  • Conversely, acetaminophen and indomethacin worsened aging in older worms, suggesting they may pose risks rather than benefits for elderly individuals due to increased toxicity and oxidative stress.
View Article and Find Full Text PDF

Flos (CIF) has been commonly consumed for the treatment of inflammation and related skin diseases. However, the potential bioactive components responsible for its anti-inflammatory and sensitive skin (SS) improvement activities, and the correlated mechanisms of action still remain unknown. In this work, it was firstly found that the CIF extract (CIFE) displayed arrestive free radical scavenging activity on DPPH and ABTS radicals, with no significant difference with positive control Trolox ( > 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!