Octopamine is an alpha agonist, the levels of which vary with age and in pathophysiological conditions. The levels of octopamine were found to be higher in the aortic smooth muscle and red blood corpuscles, but lower in the plasma of spontaneously hypertensive rats (SHR) than in the Wistar Koyoto rats. The importance of these variations are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aortic smooth
8
smooth muscle
8
red blood
8
spontaneously hypertensive
8
wistar koyoto
8
comparative estimation
4
estimation octopamine
4
octopamine aortic
4
muscle plasma
4
plasma red
4

Similar Publications

Atherosclerosis and aortic aneurysms are prevalent cardiovascular diseases in the elderly, characterized by chronic inflammation and oxidative stress. This study explores the role of CircXYLT1 in regulating oxidative stress and vascular remodeling in age-related vascular diseases. RNA sequencing revealed a significant upregulation of CircXYLT1 in the vascular tissues of aged mice, highlighting its potential role in age-related vascular diseases.

View Article and Find Full Text PDF

Background: Apolipoprotein C3 (apo C3) is primarily secreted by the liver and is involved in promoting sterile inflammation and organ damage under pathological conditions. Previous studies have shown that apo C3 is abundant in the plasma exosomes of patients with aortic dissection (AD), but its specific role in AD remains unclear.

Methods And Results: In vivo, adeno-associated virus was used to knock down hepatic apo C3 expression in an AD mouse model to assess the impact of liver-derived apo C3 on the development of AD.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.

View Article and Find Full Text PDF

Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy.

Circ Heart Fail

January 2025

Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).

Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.

Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.

View Article and Find Full Text PDF

Mitochondrial NAD deficiency in vascular smooth muscle impairs collagen III turnover to trigger thoracic and abdominal aortic aneurysm.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Thoracic and abdominal aortic aneurysm poses a substantial mortality risk in adults, yet many of its underlying factors remain unidentified. Here, we identify mitochondrial nicotinamide adenine dinucleotide (NAD)⁺ deficiency as a causal factor for the development of aortic aneurysm. Multiomics analysis of 150 surgical aortic specimens indicated impaired NAD salvage and mitochondrial transport in human thoracic aortic aneurysm, with expression of the NAD transporter SLC25A51 inversely correlating with disease severity and postoperative progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!