At the 64-cell-stage embryos of Patella develop a prototroch consisting of four groups of four cilia-bearing cells. Ciliogenesis of isolated blastomeres and trochoblasts was studied, as well as the effect on it of cleavage arrest caused by cytochalasin B treatment. Isolation of blastomeres or trochoblast cells has no influence on ciliogenesis; neither has arrest of cleavage in whole embryos after the third cleavage. However, cleavage arrest before third cleavage completely prevents ciliogenesis. Thus, third cleavage is decisive for the expression of the developmental potential of the primary trochoblasts. Impairment of DNA synthesis by aphidicolin in the S-phase preceding third cleavage also prevents ciliogenesis. It is concluded that a determinant for ciliogenesis as well as certain nuclear factors must be segregated into the micromeres at third cleavage for ciliogenesis to occur in the prototroch cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

third cleavage
20
developmental potential
8
cleavage
8
cleavage arrest
8
prevents ciliogenesis
8
ciliogenesis
6
third
5
restriction developmental
4
potential trochoblast
4
trochoblast ciliation
4

Similar Publications

ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III.

Int J Biol Macromol

January 2025

Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E.

View Article and Find Full Text PDF

Self-driven and self-catalytic tripedal DNA nanomachine for rapid and sensitive detection of miR-21 in in colorectal cancer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q).

View Article and Find Full Text PDF

Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest.

Dev Cell

January 2025

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China. Electronic address:

Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status.

View Article and Find Full Text PDF

QM/MM study reveals novel mechanism of KRAS and KRAS catalyzed GTP hydrolysis.

Int J Biol Macromol

January 2025

Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China. Electronic address:

As a crucial drug target, KRAS can regulate most cellular processes involving guanosine triphosphate (GTP) hydrolysis. However, the mechanism of GTP hydrolysis has remained controversial over the past decades. Here, several different GTP hydrolysis mechanisms catalyzed by wild-type KRAS (WT-KRAS) and KRAS mutants were discussed via four QM/MM calculation models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!