Phenylalanine is accumulated in the genetically linked deficiency phenylketonuria. The effect of L-phenylalanine on the transport of tryptophan was studied using membrane vesicles from rat-brain synaptosomes. Phenylalanine at similar concentrations to those found in phenylketonuric patients competitively inhibits tryptophan uptake, with a Ki of the same order as the Km for tryptophan. This inhibition could be responsible for the depletion of serotonin found in phenylketonuria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02391190DOI Listing

Publication Analysis

Top Keywords

membrane vesicles
8
inhibition l-phenylalanine
4
tryptophan
4
l-phenylalanine tryptophan
4
tryptophan transport
4
transport synaptosomal
4
synaptosomal plasma
4
plasma membrane
4
vesicles implications
4
implications pathogenesis
4

Similar Publications

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.

View Article and Find Full Text PDF

Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.

View Article and Find Full Text PDF

Metabolic Tagging Technology of Exosomes- An Updated Review.

Curr Pharm Des

January 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.

Exosomes are small extracellular vesicles secreted by various cell types, playing a crucial role in intercellular communication by carrying proteins, lipids, and nucleic acids, thus holding significant potential in diagnostics and therapeutics. Accurate labeling of exosomes is vital for studying their biogenesis, trafficking, and functional properties, enabling precise tracking and manipulation. This review examines current labeling techniques, including metabolic glycan labeling, chemical tagging, membrane fluorescent dyes, bio-conjugation, non-covalent labeling, and cell-engineering approaches.

View Article and Find Full Text PDF

A game of hide-and-seek: how extracellular vesicles evade the immune system.

Drug Deliv Transl Res

January 2025

Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.

Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!