The formation of a wide beam is found necessary for a clinical application of a fast electron beam. A method of formation using thin dispersion foils is the most common one. An electromagnetic method of formation has been worked out, and dose distributions of fast electrons formed by this method have been compared in the tissue equivalent medium with those formed with the help of dispersion foils. The effect of some of the individual units of the forming device in these two methods of formation has been assessed. The experiment was conducted on medical beta-trons B-15 and B-5M-25 manufactured in the USSR. The depth dose distributions of fast electrons along the beam central axis in the electromagnetic formation for electrons with an energy of 7-24 MEV, field 8 X 10 cm and DSS = 90 cm are presented. It has been established that the beam intensity in the electromagnetic formation is higher than in the utilization of dispersion foils. Depth dose distribution is better in the electromagnetic formation than in the utilization of dispersion foils.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dispersion foils
16
distributions fast
12
fast electrons
12
electromagnetic formation
12
electrons energy
8
energy 7-24
8
7-24 mev
8
method formation
8
dose distributions
8
depth dose
8

Similar Publications

A combined surface science/microreactor approach was applied to examine interface effects in ethylene hydrogenation on carbon-supported Ag, Au, and Cu nanoparticle catalysts. Turnover frequencies (TOFs) were substantially higher for supported catalysts than for (unsupported) polycrystalline metal foils, especially for Ag. Spark ablation of the corresponding metals on highly oriented pyrolytic graphite (HOPG) and carbon-coated grids yielded nanoparticles of around 3 nm size that were well-suited for characterization by X-ray photoelectron spectroscopy (XPS), high-resolution (scanning) transmission electron microscopy (HRTEM/STEM), and energy dispersive X-ray spectroscopy (EDX).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new low-temperature plasma-assisted method to create GdFeO nanoparticles from solid metallic foils of Gd and Fe, enabling both colloidal and thin film forms.
  • Characterization techniques like electron microscopy and spectroscopy confirmed the successful formation of the orthorhombic perovskite GdFeO phase and a uniform distribution of elements.
  • The nanoparticles displayed properties typical of antiferromagnetic materials, with potential applications in magnetic memory devices and gas sensors facilitated by a modified one-step thin film deposition process.
View Article and Find Full Text PDF

Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabricating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils.

View Article and Find Full Text PDF

In order to prepare self-standing and flexible slow neutron reflectors made of graphite fluoride (GF) with high contents of (CF) structural phase, graphite foils of different thicknesses were used as starting materials for gas (F)/solid fluorination. The maximal interlayer distance of GF was obtained with this phase thanks to the stacking sequence FCCF/FCCF; this is mandatory for the efficient reflection of slow neutrons. 71 and 77% of the (CF) phase were achieved for graphite foils with thicknesses of 1.

View Article and Find Full Text PDF

The healthcare-associated infections (HAIs) and pandemics caused by multidrug-resistant (MDR) and new-generation pathogens threaten the whole world community. Cu and its alloys have been attracting widespread interest as anti-contamination materials due to the rapid inactivation of MDR-superbugs and viruses. Applying thin Cu-based foils on pre-existing surfaces in hygiene-sensitive areas represents a quick, simple, cost-effective self-sanitising practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!