[Fluorides and bacterial plaque].

Arch Stomatol (Napoli)

Published: October 1985

Download full-text PDF

Source

Publication Analysis

Top Keywords

[fluorides bacterial
4
bacterial plaque]
4
[fluorides
1
plaque]
1

Similar Publications

Novel silver nanoparticle-based biomaterials for combating biofilms.

Front Microbiol

January 2025

Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt.

Background: is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating biofilms.

Methods: Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of isolates.

View Article and Find Full Text PDF

Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium.

Commun Biol

January 2025

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness and safety of dentifrices containing Nano silver fluoride (NSF) against the bacteria Streptococcus mutans, which causes tooth decay.
  • Researchers synthesized NSF particles and created dentifrices with varying concentrations of NSF, assessing their antimicrobial properties using an agar diffusion method and cytotoxicity on mouse macrophage cells.
  • Results showed that NSF dentifrices inhibited bacterial growth effectively while also evaluating their impact on cell viability to ensure safety for use in oral health products.
View Article and Find Full Text PDF

Bacteria of the genus are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain . 5(3), which has previously confirmed genetic potential for the degrading of PFCAs.

View Article and Find Full Text PDF

The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq.

Microorganisms

December 2024

Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA.

Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (, ) and four Gram-negative bacteria (, , , and ), were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!