We have investigated the existence of structural components in the nucleus of the oocyte of Xenopus laevis and other amphibia that are insoluble in non-denaturing detergents and buffers of low and high ionic strength. These cells are particularly suitable for such studies as they have a high frequency of extrachromosomal amplified nucleoli and pore complexes of the nuclear envelope. Using biochemical and immunological techniques, we have shown these structures to contain only two major proteins. These are a polypeptide of Mr 145000, which is located in a meshwork of filaments specific to the nucleolar cortex, and certain nucleoplasmic bodies probably derived therefrom, and a polypeptide of Mr 68000, which is the predominant constituent of the lamina-pore complex structure. We show that the latter protein is related to, but not identical to, lamina proteins ('lamins') of somatic cells, indicating cell type-specificity of the expression of polypeptides of the lamin family. In addition, we describe a protein of Mr 180000, which is the major constituent of the dense fibrillar component of the nucleolus. This can be partially solubilized in buffers of moderately high ionic strength. We interpret proteins of this category as karyoskeletal components involved in the architectural organization of specific functional topology within the nucleus. In contrast to previous reports for other cell types we have found no other prominent high-salt-insoluble structures in the nuclear interior, indicating the absence of an extended internal nuclear matrix in this kind of nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.1984.supplement_1.11DOI Listing

Publication Analysis

Top Keywords

high ionic
8
ionic strength
8
karyoskeletal proteins
4
proteins organization
4
organization amphibian
4
amphibian oocyte
4
nucleus
4
oocyte nucleus
4
nucleus investigated
4
investigated existence
4

Similar Publications

The impact of new-onset atrial fibrillation in the setting of acute coronary syndrome.

J Cardiol

January 2025

Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; Kent and Medway Medical School, Canterbury, Kent, UK; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China.

Approximately 10 % of patients who have suffered from myocardial infarction develop new-onset atrial fibrillation (AF). Coronary artery disease implicating atrial branches has been associated with AF. The following variables have been associated with new-onset AF in the setting of acute coronary syndrome: older age, history of hypertension, history of angina, history of stroke, chronic renal failure, body mass index, no statin use, worse nutritional status, worse Killip class, admission heart rate ≥ 85 bpm, complete atrioventricular block, Glasgow prognostic score, Syntax score, CHEST score > 3, PRECISE-DAPT score ≥ 25, left ventricular ejection fraction ≤40 %, increased left atrial diameter, E/E' ratio > 12, epicardial fat tissue thickness, and thrombolysis in myocardial infarction flow <3.

View Article and Find Full Text PDF

The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.

View Article and Find Full Text PDF

High-entropy NASICON-Type LiAlTiZrSnTa(PO) with high electrochemical stability for lithium-ion batteries.

J Colloid Interface Sci

December 2024

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; High Entropy Materials Center, Hsinchu 300044, Taiwan. Electronic address:

LiAlTi (PO) (LATP) is a promising NASICON-type solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs) owing to its high ionic conductivity, low cost, and stability in ambient atmosphere. However, the electrochemical stability of LATP suffers upon contact with lithium metals, resulting in a reduction of Ti to Ti in its structure. This limitation necessitates interface modification processes, hindering its use in lithium-ion batteries.

View Article and Find Full Text PDF

Phthalocyanine nickel enhanced composite solid-state electrolytes with homogenous and fast Li-ion conduction for high-voltage Li-metal batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.

Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.

View Article and Find Full Text PDF

Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!