Information on yield, lethality, and protease activity is given for venoms of Crotalus exul, C. p. pricei, C. pusillus, C. w. willardi and Sistrurus ravus. Lethal toxicity of C. tigris venom (LD50 i.v. 0.056 mg/kg; s.c. 0.21 mg/kg) is the highest known for any rattlesnake venom. The lethal potency of C. pricei venom is high by i.v. but not by s.c. injection. Both these venoms lack protease activity. C. pusillus venom is lowest in lethality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0041-0101(84)90169-7DOI Listing

Publication Analysis

Top Keywords

protease activity
12
lethal toxicity
8
activity lethal
4
toxicity venoms
4
venoms rattlesnakes
4
rattlesnakes yield
4
yield lethality
4
lethality protease
4
activity venoms
4
venoms crotalus
4

Similar Publications

FAP-catalyzed in situ self-assembly of magnetic resonance imaging probe for early and precise staging of liver fibrosis.

Sci Adv

March 2025

Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.

Liver fibrosis is an inevitable stage in the progression of most chronic liver diseases. Early diagnosis and treatment of liver fibrosis are crucial for effectively managing chronic liver conditions. However, there lacks a noninvasive and sensitive imaging method capable of early assessing fibrosis activity.

View Article and Find Full Text PDF

FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism.

Proc Natl Acad Sci U S A

March 2025

Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette 91198, France.

is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, pannus formation, and progressive joint destruction. The inflammatory milieu in RA drives endothelial cell activation and upregulation of adhesion molecules, thus facilitating leukocyte infiltration into the synovium. Reelin, a circulating glycoprotein previously implicated in endothelial activation and leukocyte recruitment in diseases such as atherosclerosis and multiple sclerosis, has emerged as a potential upstream regulator of these processes.

View Article and Find Full Text PDF

Proteasomal processing of the viral replicase ORF1 facilitates HEV-induced liver fibrosis.

Proc Natl Acad Sci U S A

March 2025

Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.

Chronic infections with hepatitis E virus (HEV), especially those of genotype 3 (G3), frequently lead to liver fibrosis and cirrhosis in patients. However, the causation and mechanism of liver fibrosis triggered by chronic HEV infection remain poorly understood. Here, we found that the viral multiple-domain replicase (ORF1) undergoes unique ubiquitin-proteasomal processing leading to formation of the EV-erived MAD ctivator (HDSA), a viral polypeptide lacking putative helicase and RNA polymerase domains.

View Article and Find Full Text PDF

The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis.

Cell Mol Life Sci

March 2025

Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.

Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!