The main attention is paid to the critical analysis of experimental data on morphogenetically active substances, so called "morphogens". It is proposed to consider the morphogens as specific transmitters providing for definite phases of morphogenetic tissues interactions, rather than as vectors of "morphogenetic information". In the normal development, the most studied morphogenetic tissue interactions can be referred to as so called permissive inductions, since the cells of the vertebrate embryos (amphibians, avians) are early determined for development in the ectomeso--and endodermal directions. A slow progress in studying the morphogens can be due to the following causes. 1. Theoretical "inadequacy" of the former concepts on the essence and mechanisms of embryonic induction. The necessity to develop a new system of concepts in this area of developmental biology is stressed. 2. Incompleteness of knowledge about the properties of reacting tissues and the mechanisms of action of morphogens. The early gastrula ectoderm of amphibians, most frequently used for testing the morphogens, appears to be a heterogenous population of the cells with different properties and potencies. It is, therefore, impossible to standardize strictly the biotesting of morphogens. It is suggested that the use to this end of aggregates of cell "strains" from the gastrula ectoderm, rather than of the gastrula ectoderm itself, may be more adequate 3. Insufficiency of embryonic material for biochemical identification and isolation of natural morphogens. A study of so called heterogenous inductors might be of help; these latter can be considered as analogs of natural morphogens. But the similarity of natural and heterogenous inductors can be limited only by their final effect on target tissue. The data are provided on the chemical nature, properties and mechanisms of action for a number of natural and heterogenous inductors (vegetalizing, neuralizing, mesodermalizing, lens-inducing factors). A conclusion is drawn that specific antigens do exist normally but they should not be established as a special class of "informationally important" molecules. The information necessary for development is contained in target cells and the function of a morphogen consists in providing for a definite link in the chain of processes leading to the switching on or expression of one or another programme. Only syntheses of specific proteins can, apparently, be programmed, thus reflecting the "onset" of differentiation path for a cell.
Download full-text PDF |
Source |
---|
Development
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFDevelopment
December 2024
Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
Anteroposterior (AP) elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of AP axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively.
View Article and Find Full Text PDFCells Dev
December 2024
Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile. Electronic address:
Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning.
View Article and Find Full Text PDFDev Biol
February 2025
Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA. Electronic address:
An early step in triploblastic embryo differentiation is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to embryonic enhancers before zygotic genome activation, initiating germ layer specification. While maternal TFs' role in establishing epigenetic marks is known, how early pluripotent cells gain spatially restricted epigenetic identities remains unclear.
View Article and Find Full Text PDFJ Vis Exp
June 2024
Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine;
Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!