We utilized immunoperoxidase methods to study the distribution of both cytosolic or soluble(s) and mitochondrial (m) aspartate aminotransferase (AspAT) in normal, ischemic, and necrotic myocardium. Human myocardium was obtained from autopsy (n = 9) and surgery (n = 6). Cardiac tissue from 26 dogs with experimental myocardial infarction induced by closed-chest balloon occlusion and four dogs with myocardial ischemia without necrosis induced by a 50% reduction in left main coronary artery flow for 3 hours were studied. Duration of occlusion was 45 minutes (n = 1), 3 hours (n = 11), 5 to 6 hours (n = 10), or 15 to 24 hours (n = 4). Highly purified m- and s-AspAT and specific antibodies were prepared in our laboratory. In all cases, control experiments were performed. Microscopically normal human and dog myocardium uniformly stained for m- and s-AspAT. Necrotic myocardium from patients with infarcts showed markedly reduced immunostaining. In those dogs with myocardial necrosis, all dogs with coronary occlusion of 5 to 24 hours, and eight of 11 dogs with 3-hour occlusions, immunostaining was significantly reduced for both s- and m-AspAT in regions confirmed to be necrotic by triphenyl tetrazolium chloride and hematoxylin and eosin staining. Myocardial necrosis was confirmed in the 3-hour infarcts by electron microscopy. In the four dogs with a 50% reduction in left main flow for 3 hours, and one dog with a 45-minute coronary occlusion, ischemia was demonstrated by glycogen loss in period acid-Schiff-stained sections but there was no evidence of necrosis by electron microscopy or triphenyl tetrazolium chloride staining and there was no loss of immunostaining evident for s- or m-AspAT. Thus, s- and m-AspAT were visualized in normal and ischemic myocardium with decreased staining in necrotic tissue using immunoperoxidase techniques. Loss of both s- and m-AspAT can be demonstrated in human myocardium and in experimental canine myocardium as early as 3 hours after coronary occlusion and appears to be specific for irreversible myocardial injury. No depletion of isoenzyme can be detected by immunohistochemical techniques in tissue that is ischemic but not necrotic. Furthermore, by these immunoperoxidase techniques, loss of s- and m-AspAT from necrotic myocardium appears to be simultaneous.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!