The effects of unilateral stimulation of the cerebral motor cortex and of the visual cortical area on the activity of the nigrostriatal dopaminergic neurons were examined in halothane-anesthetized cats. For this purpose, one push-pull cannula was inserted in each caudate nuclei and another one in the substantia nigra ipsilateral to the stimulated side. In all cases, the release of [3H]dopamine ([3H]DA) continuously formed from L-[3,5-3H]tyrosine was estimated in superfusates. Unilateral electrical stimulation of the cerebral motor cortex (area 4) induced a long-lasting and similar activation of [3H]DA release in both caudate nuclei. The activation of [3H]DA release in the contralateral side was selectively abolished after acute transection of the rostral part of the corpus callosum. This transection also suppressed the flexion of the contralateral forelimb induced by the stimulation. The activation of [3H]DA release could be related to the stimulation of corticostriatal neurons which may interact directly or indirectly with dopaminergic terminals in both caudate nuclei. Unilateral electrical stimulation of the visual cortex (areas 18 and 19) markedly stimulated the release of [3H]DA in the ipsilateral caudate nucleus. A slight effect was seen in the contralateral structure 20 min after the stimulation. These results are consistent with the existence of a main ipsilateral pathway originating from the visual cortex and projecting directly to the striatum. Both types of electrical stimulation immediately activated the release of [3H]DA in the ipsilateral substantia nigra. These effects were still seen 20 min after the stimulations. The activation of the dendritic release of [3H]DA could be related to the stimulation of a corticonigral projection. These results further indicate that the nigrostriatal dopaminergic neurons may be involved in sensory motor integration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(78)90797-7DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
16
caudate nuclei
16
substantia nigra
12
activation [3h]da
12
[3h]da release
12
release [3h]da
12
stimulation
9
release
8
nuclei substantia
8
stimulation cerebral
8

Similar Publications

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

Retrospective Cohort Study on the Incidence and Management of Hemiplegic Shoulder Pain in Stroke Inpatients.

Cureus

December 2024

Physical Medicine and Rehabilitation, Centro de Reabilitação do Norte, Vila Nova de Gaia, PRT.

Background: Painful hemiplegic shoulder (PHS) is a prevalent and challenging complication following a stroke and can significantly impair a patient's engagement in rehabilitation, leading to poorer functional outcomes and extended hospital stays. This retrospective cohort study aims to investigate the incidence, etiology, and management of PHS in stroke inpatients, focusing on the effectiveness of various therapeutic interventions.

Methods: We conducted a retrospective analysis of subacute stroke inpatients who developed PHS during rehabilitation at a single center.

View Article and Find Full Text PDF

Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation.

Bioelectron Med

January 2025

SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.

The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.

View Article and Find Full Text PDF

Efficacy and safety of non-invasive low-frequency tibial nerve stimulator in overactive bladder.

Eur J Med Res

January 2025

Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing, 100730, China.

Objectives: To evaluate the efficacy and safety of a non-invasive low-frequency tibial nerve stimulator (TNS-01) vs sham control in relieving the symptoms of overactive bladder (OAB) patients.

Patients: Participants who were diagnosed with primary OAB or exhibited at least one OAB symptom. All participants underwent three 30-min intervention sessions weekly.

View Article and Find Full Text PDF

Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity.

Sci Rep

January 2025

Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.

Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!