Hyperproduction of phosphate-binding protein, PhoS, in strains carrying a multicopy plasmic containing the phoS gene, resulted in saturation of export sites. As a consequence, pre-PhoS was accumulated both in the inner membrane and in the cytoplasm. This was evidenced both in electron-microscopy and after cell fractionation. Only the membrane-associated precursor could be matured and exported. The signal sequence of the cytoplasmic pre-PhoS was slowly degraded. It was first cleaved about in its middle and then completely removed. Electron microscope studies demonstrated that the cytoplasmic pre-PhoS cannot be exported post-translationally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1984.tb08398.x | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, Lille F-59000, France.
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a structurally diverse group of natural products that bacteria employ in their survival strategies. Herein, we characterized the structure, the biosynthetic pathway, and the mode of action of a RiPP family called bufferins. With thousands of homologous biosynthetic gene clusters throughout the bacterial phylogenetic tree, bufferins form by far the largest family of RiPPs modified by multinuclear nonheme iron-dependent oxidases (MNIO, DUF692 family).
View Article and Find Full Text PDFCell Death Dis
October 2023
Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
Tumour cells mainly generate energy from glycolysis, which is commonly coupled with lactate production even under normoxic conditions. As a critical lactate transporter, monocarboxylate transporter 4 (MCT4) is highly expressed in glycolytic tissues, such as muscles and tumours. Overexpression of MCT4 is associated with poor prognosis for patients with various tumours.
View Article and Find Full Text PDFACS Synth Biol
May 2022
Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
The class II lanthipeptide mersacidin, a ribosomally synthesized and post-translationally modified peptide (RiPP), displays unique intramolecular structures, including a very small lanthionine ring. When applied in the growing field of RiPP engineering, these can add unique features to new-to-nature compounds with novel properties. Recently, a heterologous expression system for mersacidin in was developed to add its modification enzymes to the RiPP engineering toolbox and further explore mersacidin biosynthesis and leader-processing.
View Article and Find Full Text PDFMethods Mol Biol
March 2022
Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
The identification of small molecules and natural product extracts that enhance or interfere with the productivity of protein folding in the endoplasmic reticulum (ER) has the potential to improve a wide variety of human pathologies. Every protein that is destined for a lysosome, integral to the cell membrane, or secreted, is folded, post-translationally modified, and exported to the cytoplasm from the ER-Golgi complex. The following protocols have successfully employed several high-fidelity cell-based luciferase high-throughput screens (HTS) to identify activators and inhibitors of ER stress and the unfolded protein response (UPR).
View Article and Find Full Text PDFFront Microbiol
October 2021
Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in has recently been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!