Isomalt (Palatinit) an equimolar mixture of alpha-D-glucopyranosido-1,6-sorbitol and alpha-D-glucopyranosido-1,6-mannitol, was compared to sucrose in a prospective double-blind controlled crossover study. The acute effects of oral ingestion of 30-g loads of isomalt or sucrose on plasma glucose, insulin, free fatty acids (FFA), lactic acid, and carbohydrate (CHO) and lipid oxidation were studied over six hours by means of continuous indirect calorimetry in ten healthy normal-weight subjects. Unlike sucrose, whose ingestion was followed by significant changes in plasma glucose, insulin, and lactic acid during the first 60 minutes of the test, no significant changes in these parameters were observed following the administration of isomalt. The increase in CHO oxidation occurring between 30 and 150 minutes was significantly lower (P less than 0.01) following isomalt than after sucrose. Conversely, the decrease in lipid oxidation was significantly less (P less than 0.01) after isomalt in comparison to sucrose. It is concluded that the rise in CHO oxidation and in plasma glucose and insulin levels is markedly reduced when sucrose is replaced by an equal weight of isomalt. In contrast to other sugar substitutes, no increase in plasma lactic acid was observed after isomalt administration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0026-0495(84)90106-9DOI Listing

Publication Analysis

Top Keywords

isomalt sucrose
12
plasma glucose
12
glucose insulin
12
lactic acid
12
isomalt
8
continuous indirect
8
indirect calorimetry
8
lipid oxidation
8
cho oxidation
8
001 isomalt
8

Similar Publications

Ensuring children adhere to their prescribed medication can be challenging, particularly when a large number of medicines on the market consist of unpalatable drugs and difficult to swallow dosage forms. Sugar-based oromucosal films are easy to administer dosage forms across all age groups within the paediatric population, as they eliminate the need for swallowing or water intake and can contribute to enhancing palatability and medicine adherence. In the current study, electrospun and 3D printed oromucosal films of chlorpromazine hydrochloride (CHZ), a bitter drug, were developed based on pullulan, a natural polysaccharide, and an array of sweeteners.

View Article and Find Full Text PDF

Impact of sugar and sugar alcohol on the pasting and retrogradation properties of starch with distinct molecular structures.

Int J Biol Macromol

October 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China. Electronic address:

The molecular structures of starch and sugar/sugar alcohol are recognized as critical determinants of starch pasting and retrogradation properties. However, their combined effects on these properties remain elusive. This study for the first time examined the pasting and retrogradation properties of nine starches with diverse molecular structures, both with and without the addition of glucose, sucrose, isomaltose, isomalt, and sorbitol.

View Article and Find Full Text PDF

Four natural sweeteners (sucrose, xylitol, fructose, and isomalt) were selected to examine the influence of their qualities and amounts on the characteristics of orodispersible films. Sodium carboxymethylcellulose (2% w/w) was utilized as the film-forming polymer and 1% w/w glycerol as a plasticizer. Films were produced through the solvent casting method, rendering them suitable for convenient application in community or hospital pharmacy settings.

View Article and Find Full Text PDF

The relationship between the fine structure of starch and its gelatinization properties is not well studied, particularly in relation to the influence of sugar or sugar alcohol. In this study, seven starches with distinct molecular structures were investigated to determine how different sugars and sugar alcohols affect their gelatinization properties. The inclusion of sugars and sugar alcohols resulted in a significant elevation of starch gelatinization temperatures (∼ 8 °C), especially with sucrose, isomaltose and isomalt.

View Article and Find Full Text PDF

Crystalline carriers such as dextrose, sucrose, galactose, mannitol, sorbitol, and isomalt have been reported to increase the solubility, and dissolution rates of poorly soluble drugs when employed as carriers in solid dispersions (SDs). However, synthetic polymers dominate the preparation of drugs: excipient SDs have been created in recent years, but these polymer-based SDs exhibit the major drawback of recrystallisation upon storage. Also, the use of high-molecular-weight polymers with increased chain lengths brings forth problems such as increased viscosity and unnecessary bulkiness in the resulting dosage form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!