Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(84)81391-5 | DOI Listing |
Sci Adv
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
A key response to acute stress is the increased brain synthesis of the neurosteroid allopregnanolone (AP). Although the rate-limiting step of this reaction is catalyzed by 5α-reductase (5αR), the role of its two primary isoenzymes, 5αR1 and 5αR2, in stress reactivity remains unclear. Here, we found that acute stress led to increased levels of 5αR2, but not 5αR1, in the medial prefrontal cortex (mPFC) of male, but not female, rats.
View Article and Find Full Text PDFProtein Sci
February 2025
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain.
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.
View Article and Find Full Text PDFSci Rep
January 2025
Capital Institute of Pediatrics, Beijing, China.
Aldehyde dehydrogenase 2 (Aldh2) Glu504Lys mutation, common in East Asians, is linked to various alcohol-related pathologies, notably fatty liver disease. Recent findings suggest that high ethanol-producing Klebsiella pneumoniae(HiAlc Kpn) exacerbates liver injury in non-alcoholic fatty liver disease (NAFLD). Our study investigated the combined effects of Aldh2 deficiency and HiAlc Kpn on NAFLD liver injury, transcriptome analyses to unearth potential mechanisms and therapeutic targets.
View Article and Find Full Text PDFAlcohol Alcohol
January 2025
Division of Treatment and Recovery, National Institute on Alcohol Abuse and Alcoholism, 6700 B Rockledge Drive, Bethesda, MD 20892, United States.
Aims: We evaluated the safety, efficacy, and patient adherence to oral ANS-6637, a selective, reversible inhibitor of aldehyde dehydrogenase 2 (ALDH2), for treating alcohol use disorder (AUD).
Methods: A 3-arm, double-blind, randomized, proof-of-concept human laboratory study embedded in a 5-week multisite clinical trial tested 200 mg and 600 mg daily doses of ANS-6637 compared to placebo in treatment-seeking adults with AUD. After 1 week of medication, participants completed an alcohol cue reactivity session.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!